Examples of Fatigue Assessment of Structural Details

  • Sergei V. Petinov
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 251)


Methodology of fatigue assessment of structures and, in particular, welded structures in service conditions displayed in Chaps.  5 and  6 is exemplified in the following. The application of the S-N criteria for fatigue of welded joints and structural components supported by the linear damage accumulation procedure is illustrated in coherence with requirements of the rules for fatigue design and evaluation of fatigue life of structures. The two examples are focused on fatigue assessment of joints in tubular structures and one example shows the use of methodology for fatigue design of ship superstructure design carried out in cooperation with a shipyard. Also, one feasible application of the strain-life criterion is shown in example of extending fatigue life of a structure by drilling out the crack tip technique.


  1. 1.
    Det Norske Veritas (2010) Fatigue assessment of offshore steel structures. Recommended practice (DNV-RP-C203). Hovik, NorwayGoogle Scholar
  2. 2.
    Det Norske Veritas (2014) Fatigue assessment of ship structures. Classification notes no 30.7. Hovik, Norway. p 108Google Scholar
  3. 3.
    EUROCODE 3 (2006) Design of steel structures EN 1993-1-9-2005 part 1–9: fatigue. ISBN 0 580 46079 7Google Scholar
  4. 4.
    Petinov SV (1976) Crack initiation period of fatigue and strain criterion-based prediction of structure fatigue life. Report SK/R-35, division of ship structures, NTH, TrondheimGoogle Scholar
  5. 5.
    Hobbacher A (2007) Recommendations for fatigue design of welded joints and components. IIW Doc. XIII-2151r1-07/ XV-1254r1-07Google Scholar
  6. 6.
    Troshchenko VT, Sosnovsky LA (1987) Soprotivlenie ustalosti metallov i splavov. Spravochnik. Fatigue resistance of metals and alloys. A handbook. Naukova Dumka, KievGoogle Scholar
  7. 7.
    Kuhn B et al (2008) Assessment of existing steel structures: recommendations for estimating of remaining fatigue life. EUR 23252 EN. ISSN 1018-5593. p 89Google Scholar
  8. 8.
    Miller KJ (1993) Materials science perspective of metal fatigue resistance. Mater Sci Technol 9:453–462CrossRefGoogle Scholar
  9. 9.
    Peterson RE (1989) Stress concentration factors. A handbook. Wiley, HobokenGoogle Scholar
  10. 10.
    Ellyin F (1997) Fatigue damage, crack growth and life prediction. Chapman & Hall, LondonCrossRefGoogle Scholar
  11. 11.
    Petinov SV (2003) Fatigue analysis of ship structures. Backbone Publishing Co., Fair LawnGoogle Scholar
  12. 12.
    Kozlyakov VV, Petinov SV (1967) Issledovanie Malozyklovoy Ustalosti Sudokorpusnykh Materialov i Konstrukzij. A study of low cycle fatigue of ship hull materials and structures. Papers of the research shipbuilding society, vol 99, LeningradGoogle Scholar
  13. 13.
    Deitz D (1998) How did the Titanic sink? Mech Eng, ASMEGoogle Scholar
  14. 14.
    Stapel HW, Vredeveldt AW, Journee JMJ, de Koning W (1998) Fatigue damage in the expansion joints of SS Rotterdam. Report 1 166-P, DUT, Delft, NetherlandsGoogle Scholar
  15. 15.
    Reed J (2011) Welding flaw led to crack in LCS-1 Hull. Online Def Acquis JGoogle Scholar
  16. 16.
    Sielski RA (2007) Aluminum marine structure design and fabrication guide. USCG project 1448. Washington, USAGoogle Scholar
  17. 17.
    Bolotin VV (1969) Statistical methods in structural mechanics. Holden-Day, San FranciscozbMATHGoogle Scholar
  18. 18.
    Mansour A, Wirsching P et al (1997) Assessment of reliability of existing ship structures. SSC-398, ship structure committee, Washington, USAGoogle Scholar
  19. 19.
    Cramer EH, Loseth R, Oliasen K, Valsgaard S (1995) Fatigue design of ship structures. In: Proceedings, PRADS-95. Seoul, Korea, pp 2.898–2.909Google Scholar
  20. 20.
    Manson SS, Muralidharan U (1988) A modified universal slopes equation for estimation of fatigue characteristics of metals. J Eng Math Tech, ASME 110Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sergei V. Petinov
    • 1
    • 2
  1. 1.Department of Hydraulics and StrengthInstitute of Civil Engineering, Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.Institute for Problems in Mechanical Engineering, Russian Academy of Sciences (IPME RAS)St. PetersburgRussia

Personalised recommendations