Skip to main content

Examples of Fatigue Assessment of Structural Details

  • Chapter
  • First Online:

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 251))

Abstract

Methodology of fatigue assessment of structures and, in particular, welded structures in service conditions displayed in Chaps. 5 and 6 is exemplified in the following. The application of the S-N criteria for fatigue of welded joints and structural components supported by the linear damage accumulation procedure is illustrated in coherence with requirements of the rules for fatigue design and evaluation of fatigue life of structures. The two examples are focused on fatigue assessment of joints in tubular structures and one example shows the use of methodology for fatigue design of ship superstructure design carried out in cooperation with a shipyard. Also, one feasible application of the strain-life criterion is shown in example of extending fatigue life of a structure by drilling out the crack tip technique.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The criterion is selected provisionally, looking for simplicity of the analysis.

  2. 2.

    Weld toes at the chord shell and at the brace shell.

  3. 3.

    The term “equivalent” is applied here since the irregular loading is substituted by composition of cyclic loading successions.

References

  1. Det Norske Veritas (2010) Fatigue assessment of offshore steel structures. Recommended practice (DNV-RP-C203). Hovik, Norway

    Google Scholar 

  2. Det Norske Veritas (2014) Fatigue assessment of ship structures. Classification notes no 30.7. Hovik, Norway. p 108

    Google Scholar 

  3. EUROCODE 3 (2006) Design of steel structures EN 1993-1-9-2005 part 1–9: fatigue. ISBN 0 580 46079 7

    Google Scholar 

  4. Petinov SV (1976) Crack initiation period of fatigue and strain criterion-based prediction of structure fatigue life. Report SK/R-35, division of ship structures, NTH, Trondheim

    Google Scholar 

  5. Hobbacher A (2007) Recommendations for fatigue design of welded joints and components. IIW Doc. XIII-2151r1-07/ XV-1254r1-07

    Google Scholar 

  6. Troshchenko VT, Sosnovsky LA (1987) Soprotivlenie ustalosti metallov i splavov. Spravochnik. Fatigue resistance of metals and alloys. A handbook. Naukova Dumka, Kiev

    Google Scholar 

  7. Kuhn B et al (2008) Assessment of existing steel structures: recommendations for estimating of remaining fatigue life. EUR 23252 EN. ISSN 1018-5593. p 89

    Google Scholar 

  8. Miller KJ (1993) Materials science perspective of metal fatigue resistance. Mater Sci Technol 9:453–462

    Article  Google Scholar 

  9. Peterson RE (1989) Stress concentration factors. A handbook. Wiley, Hoboken

    Google Scholar 

  10. Ellyin F (1997) Fatigue damage, crack growth and life prediction. Chapman & Hall, London

    Chapter  Google Scholar 

  11. Petinov SV (2003) Fatigue analysis of ship structures. Backbone Publishing Co., Fair Lawn

    Google Scholar 

  12. Kozlyakov VV, Petinov SV (1967) Issledovanie Malozyklovoy Ustalosti Sudokorpusnykh Materialov i Konstrukzij. A study of low cycle fatigue of ship hull materials and structures. Papers of the research shipbuilding society, vol 99, Leningrad

    Google Scholar 

  13. Deitz D (1998) How did the Titanic sink? Mech Eng, ASME

    Google Scholar 

  14. Stapel HW, Vredeveldt AW, Journee JMJ, de Koning W (1998) Fatigue damage in the expansion joints of SS Rotterdam. Report 1 166-P, DUT, Delft, Netherlands

    Google Scholar 

  15. Reed J (2011) Welding flaw led to crack in LCS-1 Hull. Online Def Acquis J

    Google Scholar 

  16. Sielski RA (2007) Aluminum marine structure design and fabrication guide. USCG project 1448. Washington, USA

    Google Scholar 

  17. Bolotin VV (1969) Statistical methods in structural mechanics. Holden-Day, San Francisco

    MATH  Google Scholar 

  18. Mansour A, Wirsching P et al (1997) Assessment of reliability of existing ship structures. SSC-398, ship structure committee, Washington, USA

    Google Scholar 

  19. Cramer EH, Loseth R, Oliasen K, Valsgaard S (1995) Fatigue design of ship structures. In: Proceedings, PRADS-95. Seoul, Korea, pp 2.898–2.909

    Google Scholar 

  20. Manson SS, Muralidharan U (1988) A modified universal slopes equation for estimation of fatigue characteristics of metals. J Eng Math Tech, ASME 110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petinov, S.V. (2018). Examples of Fatigue Assessment of Structural Details. In: In-Service Fatigue Reliability of Structures. Solid Mechanics and Its Applications, vol 251. Springer, Cham. https://doi.org/10.1007/978-3-319-89318-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89318-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89317-4

  • Online ISBN: 978-3-319-89318-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics