The States of Matter Search (SMS)
Chapter
First Online:
Abstract
The capacity of a metaheuristic method to attain the global optimal solution maintains an explicit dependency on its potential to find a good balance between exploitation and exploration of the search strategy.
References
- 1.Han, M.-F., Liao, S.-H., Chang, J.-Y., Lin, C.T.: Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems. Appl. Intell. https://doi.org/10.1007/s10489-012-0393-5
- 2.Pardalos Panos, M., Romeijn Edwin H., Tuy, H.: Recent developments and trends in global optimization. J. Comput. Appl. Math. 124, 209–228 (2000)MathSciNetCrossRefGoogle Scholar
- 3.Floudas, C., Akrotirianakis, I., Caratzoulas, S., Meyer, C., Kallrath, J.: Global optimization in the 21st century: advances and challenges. Comput. Chem. Eng. 29(6), 1185–1202 (2005)CrossRefGoogle Scholar
- 4.Ying, J., Ke-Cun, Z., Shao-Jian, Q.: A deterministic global optimization algorithm. Appl. Math. Comput. 185(1), 382–387 (2007)MathSciNetMATHGoogle Scholar
- 5.Georgieva, A., Jordanov, I.: Global optimization based on novel heuristics, low-discrepancy sequences and genetic algorithms. Eur. J. Oper. Res. 196, 413–422 (2009)CrossRefGoogle Scholar
- 6.Lera, D., Sergeyev, Y.: Lipschitz and Hölder global optimization using space-filling curves. Appl. Numer. Math. 60(1–2), 115–129 (2010)MathSciNetCrossRefGoogle Scholar
- 7.Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence through Simulated Evolution. Wiley, Chichester, UK (1966)MATHGoogle Scholar
- 8.De Jong, K.: Analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis, University of Michigan, Ann Arbor, MI (1975)Google Scholar
- 9.Koza, J.R.: Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems. Rep. No. STAN-CS-90-1314, Stanford University, CA (1990)Google Scholar
- 10.Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI (1975)Google Scholar
- 11.Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Boston, MA (1989)MATHGoogle Scholar
- 12.de Castro, L.N., Von Zuben, F.J.: Artificial immune systems: part I—basic theory and applications. Technical report, TR-DCA 01/99, December 1999Google Scholar
- 13.Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global optimisation over continuous spaces. Technical Report TR-95–012, ICSI, Berkeley, Calif (1995)Google Scholar
- 14.Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefGoogle Scholar
- 15.İlker, B., Birbil, S., Shu-Cherng, F.: An electromagnetism-like mechanism for global optimization. J. Global Optim. 25, 263–282 (2003)MathSciNetCrossRefGoogle Scholar
- 16.Rashedia, E., Nezamabadi-pour, H., Saryazdi, S.: Filter modeling using gravitational search algorithm. Eng. Appl. Artif. Intell. 24(1), 117–122 (2011)CrossRefGoogle Scholar
- 17.Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, December 1995Google Scholar
- 18.Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy. Technical Report No. 91-016, Politecnico di Milano (1991)Google Scholar
- 19.Tan, K.C., Chiam, S.C., Mamun, A.A., Goh, C.K.: Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. Eur. J. Oper. Res. 197, 701–713 (2009)CrossRefGoogle Scholar
- 20.Chen, G., Low, C.P., Yang, Z.: Preserving and exploiting genetic diversity in evolutionary programming algorithms. IEEE Trans. Evol. Comput. 13(3), 661–673 (2009)CrossRefGoogle Scholar
- 21.Liu, S.-H., Mernik, M., Bryant, B.: To explore or to exploit: an entropy-driven approach for evolutionary algorithms. Int. J. Knowl. Based Intell. Eng. Syst. 13(3), 185–206 (2009)Google Scholar
- 22.Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans. Evol. Comput. 9(3), 126–142 (2005)CrossRefGoogle Scholar
- 23.Fister, I., Mernik, M., Filipič, B.: A hybrid self-adaptive evolutionary algorithm for marker optimization in the clothing industry. Appl. Soft Comput. 10(2), 409–422 (2010)CrossRefGoogle Scholar
- 24.Gong, W., Cai, Z., Jiang, L.: Enhancing the performance of differential evolution using orthogonal design method. Appl. Math. Comput. 206(1), 56–69 (2008)MATHGoogle Scholar
- 25.Joan-Arinyo, R., Luzon, M.V., Yeguas, E.: Parameter tuning of PBIL and CHC evolutionary algorithms applied to solve the root identification problem. Appl. Soft Comput. 11(1), 754–767 (2011)CrossRefGoogle Scholar
- 26.Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11(2), 1679–1696 (2011)CrossRefGoogle Scholar
- 27.Sadegh, M., Reza, M., Palhang, M.: LADPSO: using fuzzy logic to conduct PSO algorithm. Appl. Intell. 37(2), 290–304 (1012)Google Scholar
- 28.Yadav, P., Kumar, R., Panda, S.K., Chang, C.S.: An intelligent tuned harmony search algorithm for optimization. Inf. Sci. 196(1), 47–72 (2012)CrossRefGoogle Scholar
- 29.Khajehzadeh, M., Taha, M.R., El-Shafie, A., Eslami, M.: A modified gravitational search algorithm for slope stability analysis. Eng. Appl. Artif. Intell. 25(8), 1589–1597 (2012)CrossRefGoogle Scholar
- 30.Koumousis, V., Katsaras, C.P.: A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance. IEEE Trans. Evol. Comput. 10(1), 19–28 (2006)CrossRefGoogle Scholar
- 31.Han, M.-F., Liao, S.-H., Chang, J.-Y., Lin, C.-T.: Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems. Appl. Intell. (2012). https://doi.org/10.1007/s10489-012-0393-5CrossRefGoogle Scholar
- 32.Brest, J., Maučec, M.S.: Population size reduction for the differential evolution algorithm. Appl. Intell. 29(3), 228–247 (2008)CrossRefGoogle Scholar
- 33.Li, Y., Zeng, X.: Multi-population co-genetic algorithm with double chain-like agents structure for parallel global numerical optimization. Appl. Intell. 32(3), 292–310 (2010)MathSciNetCrossRefGoogle Scholar
- 34.Paenke, I., Jin, Y., Branke, J.: Balancing population- and individual-level adaptation in changing environments. Adapt. Behav. 17(2), 153–174 (2009)CrossRefGoogle Scholar
- 35.Araujo, L., Merelo, J.J.: Diversity through multiculturality: assessing migrant choice policies in an island model. IEEE Trans. Evol. Comput. 15(4), 456–468 (2011)CrossRefGoogle Scholar
- 36.Gao, H., Xu, W.: Particle swarm algorithm with hybrid mutation strategy. Appl. Soft Comput. 11(8), 5129–5142 (2011)CrossRefGoogle Scholar
- 37.Jia, D., Zheng, G., Khan, M.K. (2011). An effective memetic differential evolution algorithm based on chaotic local search. Inf. Sci. 181(15), 3175–3187CrossRefGoogle Scholar
- 38.Lozano, M., Herrera, F., Cano, J.R.: Replacement strategies to preserve useful diversity in steady-state genetic algorithms. Inf. Sci. 178(23), 4421–4433 (2008)CrossRefGoogle Scholar
- 39.Ostadmohammadi, B., Mirzabeygi, P., Panahi, M.: An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced exploration–exploitation balance. Swarm Evol. Comput. (In Press)Google Scholar
- 40.Yang, G.-P., Liu, S.-Y., Zhang, J.-K., Feng, Q.-X.: Control and synchronization of chaotic systems by an improved biogeography-based optimization algorithm. Appl. Intell. https://doi.org/10.1007/s10489-012-0398-0
- 41.Hasanzadeh, M., Meybodi, M.R., Ebadzadeh, M.M.: Adaptive cooperative particle swarm optimizer. Appl. Intell. https://doi.org/10.1007/s10489-012-0420-6
- 42.Aribarg, T., Supratid, S., Lursinsap, C.: Optimizing the modified fuzzy ant-miner for efficient medical diagnosis. Appl. Intell. 37(3), 357–376 (2012)CrossRefGoogle Scholar
- 43.Fernandes, C.M., Laredo, J.L.J., Rosa, A.C., Merelo, J.J.: The sandpile mutation genetic algorithm: an investigation on the working mechanisms of a diversity-oriented and self-organized mutation operator for non-stationary functions. Appl. Intell. https://doi.org/10.1007/s10489-012-0413-5
- 44.Gwak, J., Sim, K.M.: A novel method for coevolving PS-optimizing negotiation strategies using improved diversity controlling EDAs. Appl. Intell. 38(3), 384–417 (2013)CrossRefGoogle Scholar
- 45.Cheshmehgaz, H.R., Desa, M.I., Wibowo, A.: Effective local evolutionary searches distributed on an island model solving bi-objective optimization problems. Appl. Intell. 38(3), 331–356 (2013)Google Scholar
- 46.Cuevas, E., González, M.: Multi-circle detection on images inspired by collective animal behavior. Appl. Intell. https://doi.org/10.1007/s10489-012-0396-2
- 47.Adra, S.F., Fleming, P.J.: Diversity management in evolutionary many-objective optimization. IEEE Trans. Evol. Comput. 15(2), 183–195 (2011)CrossRefGoogle Scholar
- 48.Črepineš, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. 1(1), 1–33 (2011)Google Scholar
- 49.Ceruti, G., Rubin, H.: Infodynamics: analogical analysis of states of matter and information. Inf. Sci. 177, 969–987 (2007)CrossRefGoogle Scholar
- 50.Chowdhury, D., Stauffer, D.: Principles of Equilibrium Statistical Mechanics, 1st edn. Wiley-VCH, Germany (2000)CrossRefGoogle Scholar
- 51.Betts, D.S., Turner, R.E.: Introductory Statistical Mechanics, 1st edn. Addison Wesley, Boston (1992)Google Scholar
- 52.Cengel, Y.A., Boles, M.A.: Thermodynamics: An Engineering Approach, 5th edn. McGraw-Hill, USA (2005)Google Scholar
- 53.Bueche, F., Hecht, E.: Schaum’s Outline of College Physics, 11th edn. McGraw-Hill, USA (2012)Google Scholar
- 54.Piotrowski, A.P., Napiorkowski, J.J., Kiczko, A.: Differential evolution algorithm with separated groups for multi-dimensional optimization problems. Eur. J. Oper. Res. 216(1), 33–46 (2012)MathSciNetCrossRefGoogle Scholar
- 55.Mariani, V.C., Luvizotto, L.G.J., Guerra, F.A., dos Santos Coelho, L.: A hybrid shuffled complex evolution approach based on differential evolution for unconstrained optimization. Appl. Math. Comput. 217(12), 5822–5829 (2011)MathSciNetCrossRefGoogle Scholar
- 56.Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)CrossRefGoogle Scholar
- 57.Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7(1), 17–41 (1981)MathSciNetCrossRefGoogle Scholar
- 58.Tsoulos, I.G.: Modifications of real code genetic algorithm for global optimization. Appl. Math. Comput. 203(2), 598–607 (2008)MathSciNetMATHGoogle Scholar
- 59.Black-Box Optimization Benchmarking (BBOB) 2010. In: 2nd GECCO Workshop for Real-Parameter Optimization. http://coco.gforge.inria.fr/doku.php?id=bbob-2010
- 60.Hedar, A.-R., Ali, A.F.: Tabu search with multi-level neighborhood structures for high dimensional problems. Appl. Intell. 37(2), 189–206 (2012)CrossRefGoogle Scholar
- 61.Vafashoar, R., Meybodi, M.R., Momeni Azandaryani, A.H.: CLA-DE: a hybrid model based on cellular learning automata for numerical optimization. Appl. Intell. 36(3), 735–748 (2012)CrossRefGoogle Scholar
- 62.Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC ’2005, Special session on real parameter optimization. J. Heurist (2008). https://doi.org/10.1007/s10732-008-9080-4CrossRefMATHGoogle Scholar
- 63.Shilane, D., Martikainen, J., Dudoit, S., Ovaska, S.: A general framework for statistical performance comparison of evolutionary computation algorithms. Inf. Sci. 178, 2870–2879 (2008)CrossRefGoogle Scholar
Copyright information
© Springer International Publishing AG, part of Springer Nature 2018