Advertisement

The States of Matter Search (SMS)

  • Erik Cuevas
  • Daniel Zaldívar
  • Marco Pérez-Cisneros
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 775)

Abstract

The capacity of a metaheuristic method to attain the global optimal solution maintains an explicit dependency on its potential to find a good balance between exploitation and exploration of the search strategy.

References

  1. 1.
    Han, M.-F., Liao, S.-H., Chang, J.-Y., Lin, C.T.: Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems. Appl. Intell.  https://doi.org/10.1007/s10489-012-0393-5
  2. 2.
    Pardalos Panos, M., Romeijn Edwin H., Tuy, H.: Recent developments and trends in global optimization. J. Comput. Appl. Math. 124, 209–228 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Floudas, C., Akrotirianakis, I., Caratzoulas, S., Meyer, C., Kallrath, J.: Global optimization in the 21st century: advances and challenges. Comput. Chem. Eng. 29(6), 1185–1202 (2005)CrossRefGoogle Scholar
  4. 4.
    Ying, J., Ke-Cun, Z., Shao-Jian, Q.: A deterministic global optimization algorithm. Appl. Math. Comput. 185(1), 382–387 (2007)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Georgieva, A., Jordanov, I.: Global optimization based on novel heuristics, low-discrepancy sequences and genetic algorithms. Eur. J. Oper. Res. 196, 413–422 (2009)CrossRefGoogle Scholar
  6. 6.
    Lera, D., Sergeyev, Y.: Lipschitz and Hölder global optimization using space-filling curves. Appl. Numer. Math. 60(1–2), 115–129 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence through Simulated Evolution. Wiley, Chichester, UK (1966)zbMATHGoogle Scholar
  8. 8.
    De Jong, K.: Analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis, University of Michigan, Ann Arbor, MI (1975)Google Scholar
  9. 9.
    Koza, J.R.: Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems. Rep. No. STAN-CS-90-1314, Stanford University, CA (1990)Google Scholar
  10. 10.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI (1975)Google Scholar
  11. 11.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Boston, MA (1989)zbMATHGoogle Scholar
  12. 12.
    de Castro, L.N., Von Zuben, F.J.: Artificial immune systems: part I—basic theory and applications. Technical report, TR-DCA 01/99, December 1999Google Scholar
  13. 13.
    Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global optimisation over continuous spaces. Technical Report TR-95–012, ICSI, Berkeley, Calif (1995)Google Scholar
  14. 14.
    Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefGoogle Scholar
  15. 15.
    İlker, B., Birbil, S., Shu-Cherng, F.: An electromagnetism-like mechanism for global optimization. J. Global Optim. 25, 263–282 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Rashedia, E., Nezamabadi-pour, H., Saryazdi, S.: Filter modeling using gravitational search algorithm. Eng. Appl. Artif. Intell. 24(1), 117–122 (2011)CrossRefGoogle Scholar
  17. 17.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, December 1995Google Scholar
  18. 18.
    Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy. Technical Report No. 91-016, Politecnico di Milano (1991)Google Scholar
  19. 19.
    Tan, K.C., Chiam, S.C., Mamun, A.A., Goh, C.K.: Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. Eur. J. Oper. Res. 197, 701–713 (2009)CrossRefGoogle Scholar
  20. 20.
    Chen, G., Low, C.P., Yang, Z.: Preserving and exploiting genetic diversity in evolutionary programming algorithms. IEEE Trans. Evol. Comput. 13(3), 661–673 (2009)CrossRefGoogle Scholar
  21. 21.
    Liu, S.-H., Mernik, M., Bryant, B.: To explore or to exploit: an entropy-driven approach for evolutionary algorithms. Int. J. Knowl. Based Intell. Eng. Syst. 13(3), 185–206 (2009)Google Scholar
  22. 22.
    Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans. Evol. Comput. 9(3), 126–142 (2005)CrossRefGoogle Scholar
  23. 23.
    Fister, I., Mernik, M., Filipič, B.: A hybrid self-adaptive evolutionary algorithm for marker optimization in the clothing industry. Appl. Soft Comput. 10(2), 409–422 (2010)CrossRefGoogle Scholar
  24. 24.
    Gong, W., Cai, Z., Jiang, L.: Enhancing the performance of differential evolution using orthogonal design method. Appl. Math. Comput. 206(1), 56–69 (2008)zbMATHGoogle Scholar
  25. 25.
    Joan-Arinyo, R., Luzon, M.V., Yeguas, E.: Parameter tuning of PBIL and CHC evolutionary algorithms applied to solve the root identification problem. Appl. Soft Comput. 11(1), 754–767 (2011)CrossRefGoogle Scholar
  26. 26.
    Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11(2), 1679–1696 (2011)CrossRefGoogle Scholar
  27. 27.
    Sadegh, M., Reza, M., Palhang, M.: LADPSO: using fuzzy logic to conduct PSO algorithm. Appl. Intell. 37(2), 290–304 (1012)Google Scholar
  28. 28.
    Yadav, P., Kumar, R., Panda, S.K., Chang, C.S.: An intelligent tuned harmony search algorithm for optimization. Inf. Sci. 196(1), 47–72 (2012)CrossRefGoogle Scholar
  29. 29.
    Khajehzadeh, M., Taha, M.R., El-Shafie, A., Eslami, M.: A modified gravitational search algorithm for slope stability analysis. Eng. Appl. Artif. Intell. 25(8), 1589–1597 (2012)CrossRefGoogle Scholar
  30. 30.
    Koumousis, V., Katsaras, C.P.: A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance. IEEE Trans. Evol. Comput. 10(1), 19–28 (2006)CrossRefGoogle Scholar
  31. 31.
    Han, M.-F., Liao, S.-H., Chang, J.-Y., Lin, C.-T.: Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems. Appl. Intell. (2012).  https://doi.org/10.1007/s10489-012-0393-5CrossRefGoogle Scholar
  32. 32.
    Brest, J., Maučec, M.S.: Population size reduction for the differential evolution algorithm. Appl. Intell. 29(3), 228–247 (2008)CrossRefGoogle Scholar
  33. 33.
    Li, Y., Zeng, X.: Multi-population co-genetic algorithm with double chain-like agents structure for parallel global numerical optimization. Appl. Intell. 32(3), 292–310 (2010)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Paenke, I., Jin, Y., Branke, J.: Balancing population- and individual-level adaptation in changing environments. Adapt. Behav. 17(2), 153–174 (2009)CrossRefGoogle Scholar
  35. 35.
    Araujo, L., Merelo, J.J.: Diversity through multiculturality: assessing migrant choice policies in an island model. IEEE Trans. Evol. Comput. 15(4), 456–468 (2011)CrossRefGoogle Scholar
  36. 36.
    Gao, H., Xu, W.: Particle swarm algorithm with hybrid mutation strategy. Appl. Soft Comput. 11(8), 5129–5142 (2011)CrossRefGoogle Scholar
  37. 37.
    Jia, D., Zheng, G., Khan, M.K. (2011). An effective memetic differential evolution algorithm based on chaotic local search. Inf. Sci. 181(15), 3175–3187CrossRefGoogle Scholar
  38. 38.
    Lozano, M., Herrera, F., Cano, J.R.: Replacement strategies to preserve useful diversity in steady-state genetic algorithms. Inf. Sci. 178(23), 4421–4433 (2008)CrossRefGoogle Scholar
  39. 39.
    Ostadmohammadi, B., Mirzabeygi, P., Panahi, M.: An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced exploration–exploitation balance. Swarm Evol. Comput. (In Press)Google Scholar
  40. 40.
    Yang, G.-P., Liu, S.-Y., Zhang, J.-K., Feng, Q.-X.: Control and synchronization of chaotic systems by an improved biogeography-based optimization algorithm. Appl. Intell.  https://doi.org/10.1007/s10489-012-0398-0
  41. 41.
    Hasanzadeh, M., Meybodi, M.R., Ebadzadeh, M.M.: Adaptive cooperative particle swarm optimizer. Appl. Intell.  https://doi.org/10.1007/s10489-012-0420-6
  42. 42.
    Aribarg, T., Supratid, S., Lursinsap, C.: Optimizing the modified fuzzy ant-miner for efficient medical diagnosis. Appl. Intell. 37(3), 357–376 (2012)CrossRefGoogle Scholar
  43. 43.
    Fernandes, C.M., Laredo, J.L.J., Rosa, A.C., Merelo, J.J.: The sandpile mutation genetic algorithm: an investigation on the working mechanisms of a diversity-oriented and self-organized mutation operator for non-stationary functions. Appl. Intell.  https://doi.org/10.1007/s10489-012-0413-5
  44. 44.
    Gwak, J., Sim, K.M.: A novel method for coevolving PS-optimizing negotiation strategies using improved diversity controlling EDAs. Appl. Intell. 38(3), 384–417 (2013)CrossRefGoogle Scholar
  45. 45.
    Cheshmehgaz, H.R., Desa, M.I., Wibowo, A.: Effective local evolutionary searches distributed on an island model solving bi-objective optimization problems. Appl. Intell. 38(3), 331–356 (2013)Google Scholar
  46. 46.
    Cuevas, E., González, M.: Multi-circle detection on images inspired by collective animal behavior. Appl. Intell.  https://doi.org/10.1007/s10489-012-0396-2
  47. 47.
    Adra, S.F., Fleming, P.J.: Diversity management in evolutionary many-objective optimization. IEEE Trans. Evol. Comput. 15(2), 183–195 (2011)CrossRefGoogle Scholar
  48. 48.
    Črepineš, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. 1(1), 1–33 (2011)Google Scholar
  49. 49.
    Ceruti, G., Rubin, H.: Infodynamics: analogical analysis of states of matter and information. Inf. Sci. 177, 969–987 (2007)CrossRefGoogle Scholar
  50. 50.
    Chowdhury, D., Stauffer, D.: Principles of Equilibrium Statistical Mechanics, 1st edn. Wiley-VCH, Germany (2000)CrossRefGoogle Scholar
  51. 51.
    Betts, D.S., Turner, R.E.: Introductory Statistical Mechanics, 1st edn. Addison Wesley, Boston (1992)Google Scholar
  52. 52.
    Cengel, Y.A., Boles, M.A.: Thermodynamics: An Engineering Approach, 5th edn. McGraw-Hill, USA (2005)Google Scholar
  53. 53.
    Bueche, F., Hecht, E.: Schaum’s Outline of College Physics, 11th edn. McGraw-Hill, USA (2012)Google Scholar
  54. 54.
    Piotrowski, A.P., Napiorkowski, J.J., Kiczko, A.: Differential evolution algorithm with separated groups for multi-dimensional optimization problems. Eur. J. Oper. Res. 216(1), 33–46 (2012)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Mariani, V.C., Luvizotto, L.G.J., Guerra, F.A., dos Santos Coelho, L.: A hybrid shuffled complex evolution approach based on differential evolution for unconstrained optimization. Appl. Math. Comput. 217(12), 5822–5829 (2011)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)CrossRefGoogle Scholar
  57. 57.
    Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7(1), 17–41 (1981)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Tsoulos, I.G.: Modifications of real code genetic algorithm for global optimization. Appl. Math. Comput. 203(2), 598–607 (2008)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Black-Box Optimization Benchmarking (BBOB) 2010. In: 2nd GECCO Workshop for Real-Parameter Optimization. http://coco.gforge.inria.fr/doku.php?id=bbob-2010
  60. 60.
    Hedar, A.-R., Ali, A.F.: Tabu search with multi-level neighborhood structures for high dimensional problems. Appl. Intell. 37(2), 189–206 (2012)CrossRefGoogle Scholar
  61. 61.
    Vafashoar, R., Meybodi, M.R., Momeni Azandaryani, A.H.: CLA-DE: a hybrid model based on cellular learning automata for numerical optimization. Appl. Intell. 36(3), 735–748 (2012)CrossRefGoogle Scholar
  62. 62.
    Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC ’2005, Special session on real parameter optimization. J. Heurist (2008).  https://doi.org/10.1007/s10732-008-9080-4CrossRefzbMATHGoogle Scholar
  63. 63.
    Shilane, D., Martikainen, J., Dudoit, S., Ovaska, S.: A general framework for statistical performance comparison of evolutionary computation algorithms. Inf. Sci. 178, 2870–2879 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Erik Cuevas
    • 1
  • Daniel Zaldívar
    • 1
  • Marco Pérez-Cisneros
    • 1
  1. 1.CUCEIUniversidad de GuadalajaraGuadalajaraMexico

Personalised recommendations