Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 775))

  • 474 Accesses

Abstract

The capacity of a metaheuristic method to attain the global optimal solution maintains an explicit dependency on its potential to find a good balance between exploitation and exploration of the search strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Han, M.-F., Liao, S.-H., Chang, J.-Y., Lin, C.T.: Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems. Appl. Intell. https://doi.org/10.1007/s10489-012-0393-5

  2. Pardalos Panos, M., Romeijn Edwin H., Tuy, H.: Recent developments and trends in global optimization. J. Comput. Appl. Math. 124, 209–228 (2000)

    Article  MathSciNet  Google Scholar 

  3. Floudas, C., Akrotirianakis, I., Caratzoulas, S., Meyer, C., Kallrath, J.: Global optimization in the 21st century: advances and challenges. Comput. Chem. Eng. 29(6), 1185–1202 (2005)

    Article  Google Scholar 

  4. Ying, J., Ke-Cun, Z., Shao-Jian, Q.: A deterministic global optimization algorithm. Appl. Math. Comput. 185(1), 382–387 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Georgieva, A., Jordanov, I.: Global optimization based on novel heuristics, low-discrepancy sequences and genetic algorithms. Eur. J. Oper. Res. 196, 413–422 (2009)

    Article  Google Scholar 

  6. Lera, D., Sergeyev, Y.: Lipschitz and Hölder global optimization using space-filling curves. Appl. Numer. Math. 60(1–2), 115–129 (2010)

    Article  MathSciNet  Google Scholar 

  7. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence through Simulated Evolution. Wiley, Chichester, UK (1966)

    MATH  Google Scholar 

  8. De Jong, K.: Analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis, University of Michigan, Ann Arbor, MI (1975)

    Google Scholar 

  9. Koza, J.R.: Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems. Rep. No. STAN-CS-90-1314, Stanford University, CA (1990)

    Google Scholar 

  10. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI (1975)

    Google Scholar 

  11. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Boston, MA (1989)

    MATH  Google Scholar 

  12. de Castro, L.N., Von Zuben, F.J.: Artificial immune systems: part I—basic theory and applications. Technical report, TR-DCA 01/99, December 1999

    Google Scholar 

  13. Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global optimisation over continuous spaces. Technical Report TR-95–012, ICSI, Berkeley, Calif (1995)

    Google Scholar 

  14. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  15. İlker, B., Birbil, S., Shu-Cherng, F.: An electromagnetism-like mechanism for global optimization. J. Global Optim. 25, 263–282 (2003)

    Article  MathSciNet  Google Scholar 

  16. Rashedia, E., Nezamabadi-pour, H., Saryazdi, S.: Filter modeling using gravitational search algorithm. Eng. Appl. Artif. Intell. 24(1), 117–122 (2011)

    Article  Google Scholar 

  17. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, December 1995

    Google Scholar 

  18. Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy. Technical Report No. 91-016, Politecnico di Milano (1991)

    Google Scholar 

  19. Tan, K.C., Chiam, S.C., Mamun, A.A., Goh, C.K.: Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. Eur. J. Oper. Res. 197, 701–713 (2009)

    Article  Google Scholar 

  20. Chen, G., Low, C.P., Yang, Z.: Preserving and exploiting genetic diversity in evolutionary programming algorithms. IEEE Trans. Evol. Comput. 13(3), 661–673 (2009)

    Article  Google Scholar 

  21. Liu, S.-H., Mernik, M., Bryant, B.: To explore or to exploit: an entropy-driven approach for evolutionary algorithms. Int. J. Knowl. Based Intell. Eng. Syst. 13(3), 185–206 (2009)

    Google Scholar 

  22. Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans. Evol. Comput. 9(3), 126–142 (2005)

    Article  Google Scholar 

  23. Fister, I., Mernik, M., Filipič, B.: A hybrid self-adaptive evolutionary algorithm for marker optimization in the clothing industry. Appl. Soft Comput. 10(2), 409–422 (2010)

    Article  Google Scholar 

  24. Gong, W., Cai, Z., Jiang, L.: Enhancing the performance of differential evolution using orthogonal design method. Appl. Math. Comput. 206(1), 56–69 (2008)

    MATH  Google Scholar 

  25. Joan-Arinyo, R., Luzon, M.V., Yeguas, E.: Parameter tuning of PBIL and CHC evolutionary algorithms applied to solve the root identification problem. Appl. Soft Comput. 11(1), 754–767 (2011)

    Article  Google Scholar 

  26. Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11(2), 1679–1696 (2011)

    Article  Google Scholar 

  27. Sadegh, M., Reza, M., Palhang, M.: LADPSO: using fuzzy logic to conduct PSO algorithm. Appl. Intell. 37(2), 290–304 (1012)

    Google Scholar 

  28. Yadav, P., Kumar, R., Panda, S.K., Chang, C.S.: An intelligent tuned harmony search algorithm for optimization. Inf. Sci. 196(1), 47–72 (2012)

    Article  Google Scholar 

  29. Khajehzadeh, M., Taha, M.R., El-Shafie, A., Eslami, M.: A modified gravitational search algorithm for slope stability analysis. Eng. Appl. Artif. Intell. 25(8), 1589–1597 (2012)

    Article  Google Scholar 

  30. Koumousis, V., Katsaras, C.P.: A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance. IEEE Trans. Evol. Comput. 10(1), 19–28 (2006)

    Article  Google Scholar 

  31. Han, M.-F., Liao, S.-H., Chang, J.-Y., Lin, C.-T.: Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems. Appl. Intell. (2012). https://doi.org/10.1007/s10489-012-0393-5

    Article  Google Scholar 

  32. Brest, J., Maučec, M.S.: Population size reduction for the differential evolution algorithm. Appl. Intell. 29(3), 228–247 (2008)

    Article  Google Scholar 

  33. Li, Y., Zeng, X.: Multi-population co-genetic algorithm with double chain-like agents structure for parallel global numerical optimization. Appl. Intell. 32(3), 292–310 (2010)

    Article  MathSciNet  Google Scholar 

  34. Paenke, I., Jin, Y., Branke, J.: Balancing population- and individual-level adaptation in changing environments. Adapt. Behav. 17(2), 153–174 (2009)

    Article  Google Scholar 

  35. Araujo, L., Merelo, J.J.: Diversity through multiculturality: assessing migrant choice policies in an island model. IEEE Trans. Evol. Comput. 15(4), 456–468 (2011)

    Article  Google Scholar 

  36. Gao, H., Xu, W.: Particle swarm algorithm with hybrid mutation strategy. Appl. Soft Comput. 11(8), 5129–5142 (2011)

    Article  Google Scholar 

  37. Jia, D., Zheng, G., Khan, M.K. (2011). An effective memetic differential evolution algorithm based on chaotic local search. Inf. Sci. 181(15), 3175–3187

    Article  Google Scholar 

  38. Lozano, M., Herrera, F., Cano, J.R.: Replacement strategies to preserve useful diversity in steady-state genetic algorithms. Inf. Sci. 178(23), 4421–4433 (2008)

    Article  Google Scholar 

  39. Ostadmohammadi, B., Mirzabeygi, P., Panahi, M.: An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced exploration–exploitation balance. Swarm Evol. Comput. (In Press)

    Google Scholar 

  40. Yang, G.-P., Liu, S.-Y., Zhang, J.-K., Feng, Q.-X.: Control and synchronization of chaotic systems by an improved biogeography-based optimization algorithm. Appl. Intell. https://doi.org/10.1007/s10489-012-0398-0

  41. Hasanzadeh, M., Meybodi, M.R., Ebadzadeh, M.M.: Adaptive cooperative particle swarm optimizer. Appl. Intell. https://doi.org/10.1007/s10489-012-0420-6

  42. Aribarg, T., Supratid, S., Lursinsap, C.: Optimizing the modified fuzzy ant-miner for efficient medical diagnosis. Appl. Intell. 37(3), 357–376 (2012)

    Article  Google Scholar 

  43. Fernandes, C.M., Laredo, J.L.J., Rosa, A.C., Merelo, J.J.: The sandpile mutation genetic algorithm: an investigation on the working mechanisms of a diversity-oriented and self-organized mutation operator for non-stationary functions. Appl. Intell. https://doi.org/10.1007/s10489-012-0413-5

  44. Gwak, J., Sim, K.M.: A novel method for coevolving PS-optimizing negotiation strategies using improved diversity controlling EDAs. Appl. Intell. 38(3), 384–417 (2013)

    Article  Google Scholar 

  45. Cheshmehgaz, H.R., Desa, M.I., Wibowo, A.: Effective local evolutionary searches distributed on an island model solving bi-objective optimization problems. Appl. Intell. 38(3), 331–356 (2013)

    Google Scholar 

  46. Cuevas, E., González, M.: Multi-circle detection on images inspired by collective animal behavior. Appl. Intell. https://doi.org/10.1007/s10489-012-0396-2

  47. Adra, S.F., Fleming, P.J.: Diversity management in evolutionary many-objective optimization. IEEE Trans. Evol. Comput. 15(2), 183–195 (2011)

    Article  Google Scholar 

  48. Črepineš, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. 1(1), 1–33 (2011)

    Google Scholar 

  49. Ceruti, G., Rubin, H.: Infodynamics: analogical analysis of states of matter and information. Inf. Sci. 177, 969–987 (2007)

    Article  Google Scholar 

  50. Chowdhury, D., Stauffer, D.: Principles of Equilibrium Statistical Mechanics, 1st edn. Wiley-VCH, Germany (2000)

    Book  Google Scholar 

  51. Betts, D.S., Turner, R.E.: Introductory Statistical Mechanics, 1st edn. Addison Wesley, Boston (1992)

    Google Scholar 

  52. Cengel, Y.A., Boles, M.A.: Thermodynamics: An Engineering Approach, 5th edn. McGraw-Hill, USA (2005)

    Google Scholar 

  53. Bueche, F., Hecht, E.: Schaum’s Outline of College Physics, 11th edn. McGraw-Hill, USA (2012)

    Google Scholar 

  54. Piotrowski, A.P., Napiorkowski, J.J., Kiczko, A.: Differential evolution algorithm with separated groups for multi-dimensional optimization problems. Eur. J. Oper. Res. 216(1), 33–46 (2012)

    Article  MathSciNet  Google Scholar 

  55. Mariani, V.C., Luvizotto, L.G.J., Guerra, F.A., dos Santos Coelho, L.: A hybrid shuffled complex evolution approach based on differential evolution for unconstrained optimization. Appl. Math. Comput. 217(12), 5822–5829 (2011)

    Article  MathSciNet  Google Scholar 

  56. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2), 82–102 (1999)

    Article  Google Scholar 

  57. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7(1), 17–41 (1981)

    Article  MathSciNet  Google Scholar 

  58. Tsoulos, I.G.: Modifications of real code genetic algorithm for global optimization. Appl. Math. Comput. 203(2), 598–607 (2008)

    MathSciNet  MATH  Google Scholar 

  59. Black-Box Optimization Benchmarking (BBOB) 2010. In: 2nd GECCO Workshop for Real-Parameter Optimization. http://coco.gforge.inria.fr/doku.php?id=bbob-2010

  60. Hedar, A.-R., Ali, A.F.: Tabu search with multi-level neighborhood structures for high dimensional problems. Appl. Intell. 37(2), 189–206 (2012)

    Article  Google Scholar 

  61. Vafashoar, R., Meybodi, M.R., Momeni Azandaryani, A.H.: CLA-DE: a hybrid model based on cellular learning automata for numerical optimization. Appl. Intell. 36(3), 735–748 (2012)

    Article  Google Scholar 

  62. Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC ’2005, Special session on real parameter optimization. J. Heurist (2008). https://doi.org/10.1007/s10732-008-9080-4

    Article  MATH  Google Scholar 

  63. Shilane, D., Martikainen, J., Dudoit, S., Ovaska, S.: A general framework for statistical performance comparison of evolutionary computation algorithms. Inf. Sci. 178, 2870–2879 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Cuevas .

Appendix: List of Benchmark Functions

Appendix: List of Benchmark Functions

See Tables 6.8, 6.9, 6.10 and 6.11.

Table 6.8 Unimodal test functions
Table 6.9 Multimodal test functions
Table 6.10 Multimodal test functions with fixed dimensions
Table 6.11 Set of representative GECCO functions

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cuevas, E., Zaldívar, D., Pérez-Cisneros, M. (2018). The States of Matter Search (SMS). In: Advances in Metaheuristics Algorithms: Methods and Applications. Studies in Computational Intelligence, vol 775. Springer, Cham. https://doi.org/10.1007/978-3-319-89309-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89309-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89308-2

  • Online ISBN: 978-3-319-89309-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics