Advertisement

Association Between Varicocele and Infertility

  • Daniel Lybbert
  • Nicholas N. TadrosEmail author
Chapter

Abstract

Varicocele, a pathological dilation of the scrotal veins, is thought to be the cause of infertility in up to 41% of male factor infertility and is the most common cause of secondary infertility. Men with clinically significant varicocele are found to have reduced sperm counts, impaired motility, and abnormal morphology when compared to men without varicocele. Studies have found that men treated for varicocele show improvement in semen analysis as well as improvement in pregnancy rate. The pathophysiology of varicocele is multifactorial with resulting hyperthermia of the testis, which is believed to be the greatest contributing factor to infertility. Other theories of how varicoceles cause damage include buildup of metabolic waste and reflux of renal and adrenal metabolites. Varicoceles have been found to cause damage to the Leydig cells of the testicle, resulting in decreased serum testosterone levels. Varicocele is also associated with direct damage to the Sertoli cells and germ cells. The damaging effects to these cell types has been found to be reversed when clinical varicoceles are treated by varicocelectomy. Varicoceles not only damage the testes but also the epididymis, affecting the storage and maturation of newly developed sperm. Damage to the epididymis can be quantified by measurement of alpha-glucosidase, and the effect of such damage is seen by decreased transit time through the epididymis, impaired motility, and decreased sperm storage viability. These effects can be reversed with appropriate treatment.

Keywords

Varicocele Infertility Testis Epididymis Varicocelectomy Leydig Sertoli Hyperthermia Alpha-glucosidase 

References

  1. 1.
    Agarwal A, Deepinder F, Cocuzza M, Agarwal R, Short RA, et al. Efficacy of varicocelectomy in improving semen parameters: new metaanalytical approach. Urology. 2007;70:532–8.CrossRefGoogle Scholar
  2. 2.
    Gorelick JI, Goldstein M. Loss of fertility in men with varicocele. Fertil Steril. 1993;59:613–6.CrossRefGoogle Scholar
  3. 3.
    Agarwal A, Sharma R, Harlev A, Esteves SC. Effect of varicocele on semen characteristics according to the new 2010 World Health Organization criteria: a systematic review and meta-analysis. Asian J Androl. 2016;18(2):163–70.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Sigman M. There is more than meets the eye with varicoceles: current and emerging concepts in pathophysiology, management, and study design. Fertil Steril. 2011;96:1281–2.PubMedCrossRefGoogle Scholar
  5. 5.
    Zini A, Blumenfeld A, Libman J, Willis J. Beneficial effect of microsurgical varicocelectomy on human sperm DNA integrity. Hum Reprod. 2005;20:1018–21.PubMedCrossRefGoogle Scholar
  6. 6.
    Mostafa T, Anis TH, El-Nashar A, Imam H, Othman IA. Varicocelectomy reduces reactive oxygen species levels and increases antioxidant activity of seminal plasma from infertile men with varicocele. Int J Androl. 2001;24:261–5.CrossRefGoogle Scholar
  7. 7.
    Ohl D, McCarthy JD, Schuster TG. The effect of varicocele on optimized sperm penetration assay. Fertil Steril. 2007;76:S48.CrossRefGoogle Scholar
  8. 8.
    Abdulmaaboud MR, Shokeir AA, Farage Y, Abd El-Rahman A, El-Rakhawy MM, Mutabagani H. Treatment of varicocele: a comparative study of conventional open surgery, percutaneous retrograde sclerotherapy, and laparoscopy. Urology. 1998;52:294–300.CrossRefGoogle Scholar
  9. 9.
    Segenreich E, Israilov S, Shmuele J, Niv E, Baniel J, Livne P. Evaluation of the relationship between semen parameters, pregnancy rate of wives of infertile men with varicocele, and gonadotropin-releasing hormone test before and after varicocelectomy. Urology. 1998;52:853–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Perimenis P, Markou S, Gyftopoulos K, Athanasopoulos A, Barbalias G. Effect of subinguinal varicocelectomy on sperm parameters and pregnancy rate: a two--group study. Eur Urol. 2001;39:322–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Marmar JL, Agarwal A, Prabakaran S, Agarwal R, Short RA, Benoff S, Thomas AJ. Reassessing the value of varicocelectomy as a treatment for male subfertility with a new meta-analysis. Fertil Steril. 2007;3:639–48.CrossRefGoogle Scholar
  12. 12.
    Lee JS, Park HJ, Seo JT. What is the indication of varicocelectomy in men with nonobstructive azoospermia? Urology. 2007;69:352–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Ishikawa T, Kondo Y, Yamaguchi K, Sakamoto Y, Fujisawa M. Effect of varicocelectomy on patients with unobstructive azoospermia and severe oligospermia. BJU Int. 2008;101:216–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Matthews GJ, Matthews ED, Goldstein M. Induction of spermatogenesis and achievement of pregnancy after microsurgical varicocelectomy in men with azoospermia and severe oligoasthenospermia. Fertil Steril. 1998;70:71–5.CrossRefGoogle Scholar
  15. 15.
    Dahl EV, Herrick JF. A vascular mechanism for maintaining testicular temperature by countercurrent exchange. Surg Gynecol Obstet. 1959;108:697–705.Google Scholar
  16. 16.
    Yin Y, Hawkins KL, DeWolf WC, Morgentaler A. Heat stress causes testicular germ cell apoptosis in adult mice. J Androl. 1997;18:159–65.PubMedGoogle Scholar
  17. 17.
    Lue Y-H, Hikim APS, Swerdloff RS, et al. Single exposure to heat induces stage-specific germ cell apoptosis in rats: role of intratesticular testosterone on stage specificity. Endocrinology. 1999;140(4):1709–17.  https://doi.org/10.1210/endo.140.4.6629.PubMedCrossRefGoogle Scholar
  18. 18.
    Shiraishi K, Takihara H, Matsuyama H. Elevated scrotal temperature, but not varicocele grade, reflects testicular oxidative stress-mediated apoptosis. World J Urol. 2010;28:359–64.PubMedCrossRefGoogle Scholar
  19. 19.
    Allamaneni SS, Naughton CK, Sharma RK, Thomas AJ Jr, Agarwal A. Increased seminal reactive oxygen species levels in patients with varicoceles correlate with varicocele grade but not with testis size. Fertil Steril. 2004;82:1684–6.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Hendin BN, Kolettis PN, Sharma RK, Thomas AJ Jr, Agarwal A. Varicocele is associated with elevated spermatozoal reactive oxygen species production and diminished seminal plasma antioxidant capacity. J Urol. 1999;161:1831–4.CrossRefGoogle Scholar
  21. 21.
    Khera M, Najari B, Alukal J, et al. The effect of varicocele repair on semen reactive oxygen species activity in infertile men. Fertil Steril. 2007;88:S387–8.CrossRefGoogle Scholar
  22. 22.
    Ozbek E, Yurekli M, Soylu A, Davarci M, Balbay MD. The role of adrenomedullin in varicocele and impotence. BJU Int. 2000;86:694–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Smith LB, Walker WH. The regulation of spermatogenesis by androgens. Semin Cell Dev Biol. 2014;0:2–13.  https://doi.org/10.1016/j.semcdb.2014.02.012.PubMedCentralCrossRefGoogle Scholar
  24. 24.
    Pelletier RM. The blood-testis barrier: the junctional permeability, the proteins and the lipids. Prog Histochem Cytochem. 2011;46:49–127.PubMedCrossRefGoogle Scholar
  25. 25.
    Meng J, Holdcraft RW, Shima JE, Griswold MD, Braun RE. Androgens regulate the permeability of the blood-testis barrier. Proc Natl Acad Sci U S A. 2005;102:16696–700.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Zirkin BR, Santulli R, Awoniyi CA, Ewing LL. Maintenance of advanced spermatogenic cells in the adult rat testis: quantitative relationship to testosterone concentration within the testis. Endocrinology. 1989;124:3043–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Sirvent JJ, Bernat R, Navarro MA, Rodriguez Tolra J, Guspi R, et al. Leydig cell in idiopathic varicocele. Eur Urol. 1990;17:257–61.CrossRefGoogle Scholar
  28. 28.
    The influence of varicocele on parameters of fertility in a large group of men presenting to infertility clinics. World Health Organization. Fertil Steril. 1992;57:1289–93.Google Scholar
  29. 29.
    Pastuszak AW, Wang R. Varicocele and testicular function. Asian J Androl. 2015;17:659–67.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Su L-M, Goldstein M, Schlegel PN. The effect of varicocelectomy on serum testosterone levels in infertile men with varicoceles. J Urol. 1995;154:1752–5.CrossRefGoogle Scholar
  31. 31.
    Hsiao W, Rosoff JS, Pale JR, Powell JL, Goldstein M. Varicocelectomy is associated with increases in serum testosterone independent of clinical grade. Urology. 2013;81:1213–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Sathya Srini V, Belur Veerachari S. Does varicocelectomy improve gonadal function in men with hypogonadism and infertility? Analysis of a prospective study. Int J Endocrinol. 2011;2011:916380.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Meachem SJ, Nieschlag E, Simoni M. Inhibin B in male reproduction: pathophysiology and clinical relevance. Eur J Endocrinol. 2001;145:561–71.PubMedCrossRefGoogle Scholar
  34. 34.
    Fujisawa M, Dobashi M, Yamasaki T, Kanzaki M, Okada H, et al. Significance of serum inhibin B concentration for evaluating improvement in spermatogenesis after varicocelectomy. Hum Reprod. 2001;16:1945–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Li H, Dubocq F, Jiang Y, Tiguert R, Gheiler EL, et al. Effect of surgically induced varicocele on testicular blood flow and Sertoli cell function. Urology. 1999;53:1258–62.PubMedCrossRefGoogle Scholar
  36. 36.
    Kosar A, Sarica K, Ozdiler E. Effect of varicocelectomy on seminal plasma transferrin values: a comparative clinical trial. Andrologia. 2000;32:19–22.PubMedCrossRefGoogle Scholar
  37. 37.
    Valles AS, Aveldano MI, Furland NE. Altered lipid homeostasis in sertoli cells stressed by mild hyperthermia. PLoS One. 2014;9:96.  https://doi.org/10.1371/journal.pone.0091127.CrossRefGoogle Scholar
  38. 38.
    Chemes H. The phagocytic function of Sertoli cells: a morphological, biochemical, and endocrinological study of lysosomes and acid phosphatase localization in the rat testis. Endocrinology. 1986;119:1673–81.  https://doi.org/10.1210/endo-119-4-1673.PubMedCrossRefGoogle Scholar
  39. 39.
    Peña P, Risopatrón J, Villegas J et a. Alpha-glucosidase in the human epididymis: topographic distribution and clinical application. Andrologia. 2004;36:315–20.PubMedCrossRefGoogle Scholar
  40. 40.
    Kret B, Milad M, Jeyendran RS. New discriminatory level for glucosidase activity to diagnose epididymal obstruction or dysfunction. Arch Androl. 1995;35:29–33.PubMedCrossRefGoogle Scholar
  41. 41.
    Vivas-Acevedo G, Lozano-Hernández R, Camejo MI. Epidymal function and sperm quality in patients with varicocele. BJU Int. 2014;113:642–9.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lehtihet M, Arver S, Kalin B, Kvist U, Pousette A. Left-sided grade 3 varicocele may affect the biological function of the epididymis. Scand J Urol. 2014;48:284–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Fernandez CDB, Porto EM, Arena AC, Kempinas WG. Effects of altered epididymal sperm transit time on sperm quality. Int J Androl. 2008;31(4):427–37.  https://doi.org/10.1111/j.1365-2605.2007.00788.x.PubMedCrossRefGoogle Scholar
  44. 44.
    Foldesy RG, Bedford JM. Biology of the scrotum. I. Temperature and androgen as determinants of the sperm storage capacity of the rat cauda epididymidis. Biol Reprod. 1982;26:673–82.PubMedCrossRefGoogle Scholar
  45. 45.
    Wong PYD, Au CL, Bedford JM. Biology of the scrotum. II. Suppression by abdominal temperature of transepithelial ion and water transport in the cauda epididymis. Biol Reprod. 1982;26:683–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Aktas C, Kanter M. A morphological study on Leydig cells of scrotal hyperthermia applied rats in short-term. J Mol Histol. 2009;40(1):31–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Surgery, Division of UrologySouthern Illinois UniversitySpringfieldUSA

Personalised recommendations