Advertisement

Proteomic and Metabolomic Profile of Semen and Seminal Plasma in Varicocele

  • Manesh Kumar Panner Selvam
  • Ashok AgarwalEmail author
Chapter

Abstract

Proteomics and metabolomics are now the promising omics techniques for biomarker screening providing complete information on molecular and metabolic processes associated with male infertility. Varicocele is a hot topic of interest in the field of male infertility, and a search for appropriate diagnostic and therapeutic biomarker is still continuing. In this chapter, we discuss the proteomic profile in sperm and seminal plasma of varicocele patients and present an in-depth look into the metabolomic studies associated with male infertility.

Keywords

Metabolomics Proteomics Sperm Seminal plasma Varicocele 

References

  1. 1.
    Hamada A, Esteves SC, Agarwal A. Insight into oxidative stress in varicocele-associated male infertility: part 2. Nat Rev Urol. 2013;10(1):26.CrossRefGoogle Scholar
  2. 2.
    Lundy SD, Sabanegh ES. Varicocele management for infertility and pain: a systematic review. Arab J Urol. 2017;16:157.CrossRefGoogle Scholar
  3. 3.
    Pastuszak AW, Wang R. Varicocele and testicular function. Asian J Androl. 2015;17(4):659.CrossRefGoogle Scholar
  4. 4.
    Dada R, Gupta NP, Kucheria K. Spermatogenic arrest in men with testicular hyperthermia. Teratog Carcinog Mutagen. 2003;23(S1):235–43.CrossRefGoogle Scholar
  5. 5.
    Cho C-L, Esteves SC, Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl. 2016;18(2):186.CrossRefGoogle Scholar
  6. 6.
    Dieamant F, Petersen CG, Mauri AL, Conmar V, Mattila M, Vagnini LD, et al. Semen parameters in men with varicocele: DNA fragmentation, chromatin packaging, mitochondrial membrane potential, and apoptosis. JBRA Assist Reprod. 2017;21(4):295.PubMedPubMedCentralGoogle Scholar
  7. 7.
    WHO. WHO laboratory manual for the examination and processing of human semen. 2010.Google Scholar
  8. 8.
    Majzoub A, Esteves SC, Gosálvez J, Agarwal A. Specialized sperm function tests in varicocele and the future of andrology laboratory. Asian J Androl. 2016;18(2):205–12.CrossRefGoogle Scholar
  9. 9.
    du Plessis SS, Kashou AH, Benjamin DJ, Yadav SP, Agarwal A. Proteomics: a subcellular look at spermatozoa. Reprod Biol Endocrinol. 2011;9:36.CrossRefGoogle Scholar
  10. 10.
    Oliva R, De Mateo S, Castillo J, Azpiazu R, Oriola J, Ballescà JL. Methodological advances in sperm proteomics. Hum Fertil. 2010;13(4):263–7.CrossRefGoogle Scholar
  11. 11.
    Ayaz A, Agarwal A, Sharma R, Arafa M, Elbardisi H, Cui Z. Impact of precise modulation of reactive oxygen species levels on spermatozoa proteins in infertile men. Clin Proteomics. 2015;12(1):4.CrossRefGoogle Scholar
  12. 12.
    Lan N, Montelione GT, Gerstein M. Ontologies for proteomics: towards a systematic definition of structure and function that scales to the genome level. Curr Opin Chem Biol. 2003;7(1):44–54.CrossRefGoogle Scholar
  13. 13.
    Agarwal A, Durairajanayagam D, Halabi J, Peng J, Vazquez-Levin M. Proteomics, oxidative stress and male infertility. Reprod Biomed Online. 2014;29(1):32–58.CrossRefGoogle Scholar
  14. 14.
    Jodar M, Sendler E, Krawetz SA. The protein and transcript profiles of human semen. Cell Tissue Res. 2016;363(1):85–96.CrossRefGoogle Scholar
  15. 15.
    Amaral A, Castillo J, Ramalho-Santos J, Oliva R. The combined human sperm proteome: cellular pathways and implications for basic and clinical science. Hum Reprod Update. 2013;20(1):40–62.CrossRefGoogle Scholar
  16. 16.
    Samanta L, Parida R, Dias TR, Agarwal A. The enigmatic seminal plasma: a proteomics insight from ejaculation to fertilization. Reprod Biol Endocrinol. 2018;16:41.CrossRefGoogle Scholar
  17. 17.
    Jodar M, Soler-Ventura A, Oliva R. Semen proteomics and male infertility. J Proteome. 2017;162:125–34.CrossRefGoogle Scholar
  18. 18.
    Panner Selvam MK, Agarwal A. Update on the proteomics of male infertility: a systematic review. Arab J Urol. 2018;16(1):103–12.CrossRefGoogle Scholar
  19. 19.
    Starita-Geribaldi M, Poggioli S, Zucchini M, Garin J, Chevallier D, Fenichel P, et al. Mapping of seminal plasma proteins by two-dimensional gel electrophoresis in men with normal and impaired spermatogenesis. Mol Hum Reprod. 2001;7(8):715–22.CrossRefGoogle Scholar
  20. 20.
    Starita-Geribaldi M, Roux F, Garin J, Chevallier D, Fénichel P, Pointis G. Development of narrow immobilized pH gradients covering one pH unit for human seminal plasma proteomic analysis. Proteomics. 2003;3(8):1611–9.CrossRefGoogle Scholar
  21. 21.
    Drabovich AP, Dimitromanolakis A, Saraon P, Soosaipillai A, Batruch I, Mullen B, et al. Differential diagnosis of azoospermia with proteomic biomarkers ECM1 and TEX101 quantified in seminal plasma. Sci Transl Med. 2013;5(212):212ra160.CrossRefGoogle Scholar
  22. 22.
    Amaral A, Paiva C, Attardo Parrinello C, Estanyol JM, Ballescà JLS, Ramalho-Santos JO, et al. Identification of proteins involved in human sperm motility using high-throughput differential proteomics. J Proteome Res. 2014;13(12):5670–84.CrossRefGoogle Scholar
  23. 23.
    Sharma R, Agarwal A, Mohanty G, Du Plessis SS, Gopalan B, Willard B, et al. Proteomic analysis of seminal fluid from men exhibiting oxidative stress. Reprod Biol Endocrinol. 2013;11(1):85.CrossRefGoogle Scholar
  24. 24.
    Sharma R, Agarwal A, Mohanty G, Jesudasan R, Gopalan B, Willard B, et al. Functional proteomic analysis of seminal plasma proteins in men with various semen parameters. Reprod Biol Endocrinol. 2013;11(1):38.CrossRefGoogle Scholar
  25. 25.
    Giacomini E, Ura B, Giolo E, Luppi S, Martinelli M, Garcia RC, et al. Comparative analysis of the seminal plasma proteomes of oligoasthenozoospermic and normozoospermic men. Reprod Biomed Online. 2015;30(5):522–31.CrossRefGoogle Scholar
  26. 26.
    Intasqui P, Camargo M, Del Giudice PT, Spaine DM, Carvalho VM, Cardozo KH, et al. Unraveling the sperm proteome and post-genomic pathways associated with sperm nuclear DNA fragmentation. J Assist Reprod Genet. 2013;30(9):1187–202.CrossRefGoogle Scholar
  27. 27.
    Intasqui P, Camargo M, Del Giudice PT, Spaine DM, Carvalho VM, Cardozo KH, et al. Sperm nuclear DNA fragmentation rate is associated with differential protein expression and enriched functions in human seminal plasma. BJU Int. 2013;112(6):835–43.CrossRefGoogle Scholar
  28. 28.
    Hosseinifar H, Gourabi H, Salekdeh GH, Alikhani M, Mirshahvaladi S, Sabbaghian M, et al. Study of sperm protein profile in men with and without varicocele using two-dimensional gel electrophoresis. Urology. 2013;81(2):293–300.CrossRefGoogle Scholar
  29. 29.
    Hosseinifar H, Sabbaghian M, Nasrabadi D, Modarresi T, Dizaj AVT, Gourabi H, et al. Study of the effect of varicocelectomy on sperm proteins expression in patients with varicocele and poor sperm quality by using two-dimensional gel electrophoresis. J Assist Reprod Genet. 2014;31(6):725–9.CrossRefGoogle Scholar
  30. 30.
    Swain N, Mohanty G, Samanta L, Intasqui P. Proteomics and male infertility. In: Proteomics in human reproduction. Cham: Springer; 2016. p. 21–43.CrossRefGoogle Scholar
  31. 31.
    Smith R, Kaune H, Parodi D, Madariaga M, Ríos R, Morales I, et al. Increased sperm DNA damage in patients with varicocele: relationship with seminal oxidative stress. Hum Reprod. 2005;21(4):986–93.CrossRefGoogle Scholar
  32. 32.
    Samanta L, Agarwal A, Swain N, Sharma R, Gopalan B, Esteves SC, et al. Proteomic signatures of sperm mitochondria in varicocele: clinical utility as biomarkers of varicocele associated infertility. J Urol. 2018;200(2):414–22.Google Scholar
  33. 33.
    Agarwal A, Sharma R, Samanta L, Durairajanayagam D, Sabanegh E. Proteomic signatures of infertile men with clinical varicocele and their validation studies reveal mitochondrial dysfunction leading to infertility. Asian J Androl. 2016;18(2):282.CrossRefGoogle Scholar
  34. 34.
    Baazeem A, Belzile E, Ciampi A, Dohle G, Jarvi K, Salonia A, et al. Varicocele and male factor infertility treatment: a new meta-analysis and review of the role of varicocele repair. Eur Urol. 2011;60(4):796–808.CrossRefGoogle Scholar
  35. 35.
    Agarwal A, Sharma R, Durairajanayagam D, Cui Z, Ayaz A, Gupta S, et al. Differential proteomic profiling of spermatozoal proteins of infertile men with unilateral or bilateral varicocele. Urology. 2015;85(3):580–8.CrossRefGoogle Scholar
  36. 36.
    Agarwal A, Sharma R, Durairajanayagam D, Ayaz A, Cui Z, Willard B, et al. Major protein alterations in spermatozoa from infertile men with unilateral varicocele. Reprod Biol Endocrinol. 2015;13(1):8.CrossRefGoogle Scholar
  37. 37.
    Agarwal A, Sharma R, Durairajanayagam D, Cui Z, Ayaz A, Gupta S, et al. Spermatozoa protein alterations in infertile men with bilateral varicocele. Asian J Androl. 2016;18(1):43.CrossRefGoogle Scholar
  38. 38.
    Selvam MP, Agarwal A, Sharma R, Willard B, Gopalan B, Sabanegh E. Differentially expressed proteins involved in acetylation of spermatozoa in infertile men with unilateral and bilateral varicocele. Fertil Steril. 2017;108(3):e141.CrossRefGoogle Scholar
  39. 39.
    Amann RP. Can the fertility potential of a seminal sample be predicted accurately? J Androl. 1989;10(2):89–98.CrossRefGoogle Scholar
  40. 40.
    Batruch I, Lecker I, Kagedan D, Smith CR, Mullen BJ, Grober E, et al. Proteomic analysis of seminal plasma from normal volunteers and post-vasectomy patients identifies over 2000 proteins and candidate biomarkers of the urogenital system. J Proteome Res. 2011;10(3):941–53.CrossRefGoogle Scholar
  41. 41.
    Milardi D, Grande G, Vincenzoni F, Messana I, Pontecorvi A, De Marinis L, et al. Proteomic approach in the identification of fertility pattern in seminal plasma of fertile men. Fertil Steril. 2012;97(1):67–73. e1.CrossRefGoogle Scholar
  42. 42.
    Primakoff P, Myles DG. Penetration, adhesion, and fusion in mammalian sperm-egg interaction. Science. 2002;296(5576):2183–5.CrossRefGoogle Scholar
  43. 43.
    Bieniek JM, Drabovich AP, Lo KC. Seminal biomarkers for the evaluation of male infertility. Asian J Androl. 2016;18(3):426–33.CrossRefGoogle Scholar
  44. 44.
    Fariello RM, Pariz JR, Spaine DM, Gozzo FC, Pilau EJ, Fraietta R, et al. Effect of smoking on the functional aspects of sperm and seminal plasma protein profiles in patients with varicocele. Hum Reprod. 2012;27(11):3140–9.CrossRefGoogle Scholar
  45. 45.
    Camargo M, Lopes PI, Del Giudice PT, Carvalho VM, Cardozo KHM, Andreoni C, et al. Unbiased label-free quantitative proteomic profiling and enriched proteomic pathways in seminal plasma of adult men before and after varicocelectomy. Hum Reprod. 2013;28(1):33–46.CrossRefGoogle Scholar
  46. 46.
    Hamada A, Esteves SC, Agarwal A. Definitions and epidemiology. In: Varicocele and male infertility: current concepts, controversies and consensus. Cham: Springer International Publishing; 2016. p. 1–3.CrossRefGoogle Scholar
  47. 47.
    Zylbersztejn DS, Andreoni C, Del Giudice PT, Spaine DM, Borsari L, Souza GH, et al. Proteomic analysis of seminal plasma in adolescents with and without varicocele. Fertil Steril. 2013;99(1):92–8.CrossRefGoogle Scholar
  48. 48.
    Belardin LB, Del Giudice PT, Camargo M, Intasqui P, Antoniassi MP, Bertolla RP, et al. Alterations in the proliferative/apoptotic equilibrium in semen of adolescents with varicocele. J Assist Reprod Genet. 2016;33(12):1657–64.CrossRefGoogle Scholar
  49. 49.
    Del Giudice P, Belardin L, Camargo M, Zylbersztejn D, Carvalho V, Cardozo K, et al. Determination of testicular function in adolescents with varicocoele–a proteomics approach. Andrology. 2016;4(3):447–55.CrossRefGoogle Scholar
  50. 50.
    Mostafa T, Rashed L, Nabil N, Amin R. Seminal BAX and BCL2 gene and protein expressions in infertile men with varicocele. Urology. 2014;84(3):590–5.CrossRefGoogle Scholar
  51. 51.
    Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29(11):1181–9.CrossRefGoogle Scholar
  52. 52.
    Čuperlović-Culf M, Barnett DA, Culf AS, Chute I. Cell culture metabolomics: applications and future directions. Drug Discov Today. 2010;15(15–16):610–21.CrossRefGoogle Scholar
  53. 53.
    Cortezzi SS, Cabral EC, Trevisan MG, Ferreira CR, Setti AS, Braga DPAF, et al. Prediction of embryo implantation potential by mass spectrometry fingerprinting of the culture medium. Reproduction. 2013;145(5):453–62.CrossRefGoogle Scholar
  54. 54.
    Sheedy JR, Gooley PR, Nahid A, Tull DL, McConville MJ, Kukuljan S, et al. 1H-NMR analysis of the human urinary metabolome in response to an 18-month multi-component exercise program and calcium–vitamin-D3 supplementation in older men. Appl Physiol Nutr Metab. 2014;39(11):1294–304.CrossRefGoogle Scholar
  55. 55.
    Baker MJ, Hussain SR, Lovergne L, Untereiner V, Hughes C, Lukaszewski RA, et al. Developing and understanding biofluid vibrational spectroscopy: a critical review. Chem Soc Rev. 2016;45(7):1803–18.CrossRefGoogle Scholar
  56. 56.
    Zhang X, Diao R, Zhu X, Li Z, Cai Z. Metabolic characterization of asthenozoospermia using nontargeted seminal plasma metabolomics. Clin Chim Acta. 2015;450:254–61.CrossRefGoogle Scholar
  57. 57.
    Qiao S, Wu W, Chen M, Tang Q, Xia Y, Jia W, et al. Seminal plasma metabolomics approach for the diagnosis of unexplained male infertility. PLoS One. 2017;12(8):e0181115.CrossRefGoogle Scholar
  58. 58.
    Deepinder F, Chowdary HT, Agarwal A. Role of metabolomic analysis of biomarkers in the management of male infertility. Expert Rev Mol Diagn. 2007;7(4):351–8.CrossRefGoogle Scholar
  59. 59.
    Zhou X, Wang Y, Yun Y, Xia Z, Lu H, Luo J, et al. A potential tool for diagnosis of male infertility: plasma metabolomics based on GC–MS. Talanta. 2016;147:82–9.CrossRefGoogle Scholar
  60. 60.
    Jayaraman V, Ghosh S, Sengupta A, Srivastava S, Sonawat H, Narayan PK. Identification of biochemical differences between different forms of male infertility by nuclear magnetic resonance (NMR) spectroscopy. J Assist Reprod Genet. 2014;31(9):1195–204.CrossRefGoogle Scholar
  61. 61.
    Bonechi C, Collodel G, Donati A, Martini S, Moretti E, Rossi C. Discrimination of human semen specimens by NMR data, sperm parameters, and statistical analysis. Syst Biol Reprod Med. 2015;61(6):353–9.CrossRefGoogle Scholar
  62. 62.
    Gilany K, Moazeni-Pourasil RS, Jafarzadeh N, Savadi-Shiraz E. Metabolomics fingerprinting of the human seminal plasma of asthenozoospermic patients. Mol Reprod Dev. 2014;81(1):84–6.CrossRefGoogle Scholar
  63. 63.
    Jafarzadeh N, Mani-Varnosfaderani A, Minai-Tehrani A, Savadi-Shiraz E, Sadeghi MR, Gilany K. Metabolomics fingerprinting of seminal plasma from unexplained infertile men: a need for novel diagnostic biomarkers. Mol Reprod Dev. 2015;82(3):150.CrossRefGoogle Scholar
  64. 64.
    da Silva B, Del Giudice P, Spaine D, Gozzo F, Turco EL, Bertolla R. Metabolomics of male infertility: characterization of seminal plasma lipid fingerprints in men with spinal cord injury. Fertil Steril. 2011;96(3):S233.CrossRefGoogle Scholar
  65. 65.
    Mohanty G, Samanta L. Challenges of proteomic studies in human reproduction. In: Proteomics in human reproduction: Cham: Springer; 2016. p. 71–82.CrossRefGoogle Scholar
  66. 66.
    Yang C, Guo WB, Zhang WS, Bian J, Yang JK, Zhou QZ, et al. Comprehensive proteomics analysis of exosomes derived from human seminal plasma. Andrology. 2017;5(5):1007–15.CrossRefGoogle Scholar
  67. 67.
    Panner Selvam MK, Agarwal A, Sharma R, Samanta L, Gupta S, Dias TR, Martins AD. Protein fingerprinting of seminal plasma reveals dysregulation of exosome-associated proteins in infertile men with unilateral varicocele. World J Mens Health.  https://doi.org/10.5534/wjmh.180108.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.American Center for Reproductive Medicine, Department of UrologyCleveland ClinicClevelandUSA

Personalised recommendations