Effect of Varicocele Treatment on Oxidative Stress Markers and Sperm DNA Fragmentation

  • Bryan Naelitz
  • Neel ParekhEmail author


Varicocele manifests as a dilatation and convolution of the pampiniform plexus, which results in venous stasis that induces heat stress and hypoxia in the male reproductive tract. These insults increase the burden of oxidative stress by promoting production of reactive chemical species, depleting cellular stores of antioxidants, and altering activities of enzymes responsible for cellular metabolism. As a consequence of these derangements, direct and indirect markers of oxidative stress are elevated in the testes and semen of men with clinically significant varicocele. Sperm nuclear DNA is also damaged in this oxidative milieu, most commonly through strand breaks that result in fragmentation. Varicocele repair via surgical intervention or percutaneous embolization aims to occlude the internal spermatic vein and ameliorate the heat stress and hypoxia that accompany venous reflux. Antioxidant therapy aims to reduce oxidative stress by augmenting the cellular capacity to neutralize reactive chemical species. Current data support varicocele repair in infertile men with clinically detectable disease and abnormal semen parameters. There is a wealth of evidence demonstrating that varicocelectomy ameliorates markers of oxidative stress and sperm DNA fragmentation, effects that are sustained throughout the postoperative period. Though antioxidants have also been shown to temporarily improve these metrics, it is unclear how medical therapy alone affects fertility in men with varicocele. Use of antioxidants as adjuvant to surgical repair is an active area of investigation, with some evidence supporting augmentation of male fertility following varicocelectomy.


Varicocele Repair Varicocelectomy Antioxidants Oxidative Stress Sperm DNA Fragmentation DNA Oxidation Reactive Oxygen Species Reactive Nitrogen Species 


  1. 1.
    Griendling KK, Touyz RM, Zweier JL, et al. Measurement of reactive oxygen species, reactive nitrogen species, and redox-dependent signaling in the cardiovascular system. Circ Res. 2016;119(5):e39–75.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Rahman K. Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging. 2007;2(2):219–36.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2014;30(1):11–26.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Lü JM, Lin PH, Yao Q, Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med. 2009;14(4):840–60.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4(8):118–26.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Griveau JF, Le Lannou D. Reactive oxygen species and human spermatozoa: physiology and pathology. Int J Androl. 1997;20(2):61–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sanocka D, Kurpisz M. Reactive oxygen species and sperm cells. Reprod Biol Endocrinol. 2004;2:12.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Agarwal A, Virk G, Ong C, du Plessis SS. Effect of oxidative stress on male reproduction. World J Mens Health. 2014;32(1):1–17.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Agarwal A, Cho CL, Esteves SC, Majzoub A. Reactive oxygen species and sperm DNA fragmentation. Transl Androl Urol. 2017;6(Suppl 4):S695–6.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Venkatesh S, Shamsi MB, Deka D, Saxena V, Kumar R, Dada R. Clinical implications of oxidative stress & sperm DNA damage in normozoospermic infertile men. Indian J Med Res. 2011;134(3):396–8.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Agarwal A, Hamada A, Esteves SC. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol. 2012;9(12):678–90.CrossRefGoogle Scholar
  12. 12.
    Durairajanayagam D, Agarwal A, Ong C. Causes, effects and molecular mechanisms of testicular heat stress. Reprod Biomed Online. 2015;30(1):14–27.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Abd-Elmoaty MA, Saleh R, Sharma R, Agarwal A. Increased levels of oxidants and reduced antioxidants in semen of infertile men with varicocele. Fertil Steril. 2010;94(4):1531–4.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mostafa T, Anis T, Imam H, et al. Seminal reactive oxygen species-antioxidant relationship in fertile males with and without varicocele. Andrologia. 2009;41(2):125–9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mehraban D, Ansari M, Keyhan H, et al. Comparison of nitric oxide concentration in seminal fluid between infertile patients with and without varicocele and normal fertile men. Urol J. 2005;2(2):106–10.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Sakamoto Y, Ishikawa T, Kondo Y, et al. The assessment of oxidative stress in infertile patients with varicocele. BJU Int. 2008;101(12):1547–52.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Xu Y, Xu QY, Yang BH, et al. Relationship of nitric oxide and nitric oxide synthase with varicocele infertility [Chinese]. Zhonghua Nan Ke Xue. 2008;14(5):414–7.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Aksoy Y, Ozbey I, Aksoy H, et al. Seminal plasma nitric oxide concentration in oligo- and/or asthenozoospermic subjects with/without varicocele. Arch Androl. 2002;48(3):181–5.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Koksal IT, Tefekli a UM, et al. The role of reactive oxygen species in testicular dysfunction associated with varicocele. BJU Int. 2000;86(4):549–52.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Skandhan KP, Rajahariprasad A. The process of spermatogenesis liberates significant heat and the scrotum has a role in body thermoregulation. Med Hypotheses. 2007;68(2):303–7.CrossRefGoogle Scholar
  21. 21.
    Shiraishi K, Takihara H, Naito K. Testicular volume, scrotal temperature, and oxidative stress in fertile men with left varicocele. Fertil Steril. 2009;91.(Suppl. 4:1388–91.CrossRefGoogle Scholar
  22. 22.
    Salisz JA, Kass EJ, Steinert BW. The significance of elevated scrotal temperature in an adolescent with a varicocele. Adv Exp Med BioI. 1991;286:245–51.CrossRefGoogle Scholar
  23. 23.
    Alvarez JG, Storey BT. Spontaneous lipid peroxidation in rabbit and mouse epididymal spermatozoa: dependence of rate on temperature and oxygen concentration. Biol Reprod. 1985;32(2):342–51.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Guo J, Jia Y, Tao SX, et al. Expression of nitric oxide synthase during germ cell apoptosis in testis of cynomolgus monkey after testosterone and heat treatment. J Androl. 2009;30(2):190–9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Santoro G, Romeo C, Impellizzeri P, et al. Nitric oxide synthase patterns in normal and varicocele testis in adolescents. BJU Int. 2001;88(9):967–73.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Walczak-Jedrzejowska R, Wolski JK, Slowikowska-Hilczer J. The role of oxidative stress and antioxidants in male infertility. Cent European J Urol. 2013;66(1):60–7.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Gosalvez J, Lopez-Fernandez C, Fernandez JL, Sc E, Johnston SD. Unpacking the mysteries of sperm DNA fragmentation: ten frequently asked questions. J Reprod Biotechnol Fertil. 2015;4:1–16.CrossRefGoogle Scholar
  28. 28.
    Cho CL, Esteves SC, Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl. 2016;18(2):186–93.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Moskovtsev SI, Jarvi K, Mullen JB, et al. Testicular spermatozoa have statistically significantly lower DNA damage compared with ejaculated spermatozoa in patients with unsuccessful oral antioxidant treatment. Fertil Steril. 2010;93(4):1142–6.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dorostghoal M, Kazeminejad SR, Shahbazian N, Pourmehdi M, Jabbari A. Oxidative stress status and sperm DNA fragmentation in fertile and infertile men. Andrologia. 2017;49(10):e12762.CrossRefGoogle Scholar
  31. 31.
    Iommiello VM, Albani E, Di Rosa A, et al. Ejaculate oxidative stress is related with sperm DNA fragmentation and round cells. Int J Endocrinol. 2015;2015:321901.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Henkel R, Kierspel E, Slalf T, et al. Effect of reactive oxygen species produced by spermatozoa and leukocytes on sperm functions in non-leukocytospermic patients. Fertil Steril. 2005;83(3):635–42.CrossRefGoogle Scholar
  33. 33.
    Zini A, Bielecki R, Phang D, Zenzes MT. Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril. 2001;75(4):674–7.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Esteves SC, Sharma RK, Gosalvez J, Agarwal A. A translational medicine appraisal of specialized andrology testing in unexplained male infertility. Int Urol Nephrol. 2014;46(6):1037–52.CrossRefGoogle Scholar
  35. 35.
    Aitken RJ, De Luliis GN, McLachlan RI. Biological and clinical significance of DNA damage in the male germ line. Int J Androl. 2009;32(1):46–56.CrossRefGoogle Scholar
  36. 36.
    Ishikawa T, Fujioka H, Ishimura T, et al. Increased testicular 8-hydroxy-2′-deoxyguanosine in patients with varicocele. BJU Int. 2007;100(4):863–6.CrossRefGoogle Scholar
  37. 37.
    Dieamant F, Petersen CG, Mauri AL, et al. Semen parameters in men with varicocele: DNA fragmentation, chromatin packaging, mitochondrial membrane potential, and apoptosis. JBRA Assist Reprod. 2017;21(4):295–301.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Smith R, Kaune H, Parodi D, et al. Increased sperm DNA damage in patients with varicocele: relationship with seminal oxidative stress. Hum Reprod. 2006;21(4):986–93.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Zini A, Dohle G. Are varicoceles associated with increased deoxyribonucleic acid fragmentation? Fertil Steril. 2011;96(6):1283–7.CrossRefGoogle Scholar
  40. 40.
    Wang YJ, Zhang RQ, Lin YJ, et al. Relationship between varicocele and sperm DNA damage and the effect of varicocele repair: a meta-analysis. Reprod Biomed Online. 2012;25(3):307–14.CrossRefGoogle Scholar
  41. 41.
    Diegidio P, Jhaveri JK, Ghannam S, et al. Review of current varicocelectomy techniques and their outcomes. BJU Int. 2011;108(7):1157–72.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Evers JLH, Collins JA. Assessment of efficacy of varicocele repair for male subfertility: a systematic review. Lancet. 2003;361:1849–52.CrossRefGoogle Scholar
  43. 43.
    Lombardo F, Sansone A, Romanelli F, et al. The role of antioxidant therapy in the treatment of male infertility: an overview. Asian J Androl. 2011;13(5):690–7.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Garg H, Kumar R. An update on the role of medical treatment including antioxidant therapy in varicocele. Asian J Androl. 2016;18(2):222–8.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Vane JR, Botting RM. Anti-inflammatory drugs and their mechanism of action. Inflamm Res. 1998;47(Suppl 2):S78–87.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sheehan MM, Ramasamy R, Lamb DJ. Molecular mechanisms involved in varicocele-associated infertility. J Assist Reprod Genet. 2014;31(5):521–6.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Hurtado de Catalfo GE, Ranieri-Casilla A, Marra FA, et al. Oxidative stress biomarkers and hormonal profile in human patients undergoing varicocelectomy. Int J Androl. 2007;30(6):519–30.CrossRefGoogle Scholar
  48. 48.
    Mostafa T, Anis TH, El-Nashar A, et al. Varicocelectomy reduces reactive oxygen species levels an increases antioxidant activity of seminal plasma from infertile men with varicocele. Int J Androl. 2001;24(5):261–5.CrossRefGoogle Scholar
  49. 49.
    Yesilli C, Mungan G, Seckiner I, et al. Effect of varicocelectomy on sperm creatine kinase, HspA2 chaperone protein (creatine kinase-M type), LDH, LDH-X, and lipid peroxidation product levels in infertile men with varicocele. Urology. 2005;66(3):610–5.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Rodriguez Pena MR, Alescio L, Ressell A, et al. Predictors of improved seminal parameters and fertility after varicocele repair in young adults. Andrologia. 2009;41(5):277–81.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lacerda JI, Del Guidice PT, da Silva BF, et al. Adolescent varicocele: improved sperm function after varicocelectomy. Fertil Steril. 2011;95(3):944–9.CrossRefGoogle Scholar
  52. 52.
    Hamada A, Esteves SC, Agarwal A. Insight into oxidative stress in varicocele-associated male infertility: part 2. Nat Rev Urol. 2013;10(1):26–37.CrossRefGoogle Scholar
  53. 53.
    Chen SS, Huang WJ, Chang LS, Wei YH. Attenuation of oxidative stress after varicocelectomy in subfertile patients with varicocele. J Urol. 2008;179(2):639–42.CrossRefGoogle Scholar
  54. 54.
    Cervellione RM, Cervato G, Zampieri N, et al. Effect of varicocelectomy on the plasma oxidative stress parameters. J Pediatric Surg. 2006;41(2):403–6.CrossRefGoogle Scholar
  55. 55.
    Dada R, Bilal Shamsi M, Venkatesh S, et al. Attenuation of oxidative stress & DNA damage in varicocelectomy: implications in infertility management. Indian J Med Res. 2010;132(6):728–30.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Agarwal A, Sharma RK, Desai NR, et al. Role of oxidative stress in pathogenesis of varicocele and infertility. Urology. 2009;73(3):461–9.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Shiraishi K, Naito K. Generation of 4-hydroxy-2-nonenal modified proteins in testes predicts improvement in spermatogenesis after varicocelectomy. Fertil Steril. 2006;86(1):233–5.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Redmon JB, Carey P, Pyror JL. Varicocele—the most common cause of male factor infertility? Human Reprod Update. 2002;8(1):53–8.CrossRefGoogle Scholar
  59. 59.
    Chiba K, Fujisawa M. Clinical outcomes of varicocele repair in infertile men: a review. World J Mens Health. 2016;34(2):101–9.PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Roque M, Esteves SC. Effect of varicocele repair on sperm DNA fragmentation: a review. Int Urol Nephrol. 2018;50(4):583–603.CrossRefGoogle Scholar
  61. 61.
    Zini A, Azhar R, Baazeem A, Gabriel MS. Effect of microsurgical varicocelectomy on human sperm chromatin and DNA integrity: a prospective trial. Int J Androl. 2011;34(1):14–9.CrossRefGoogle Scholar
  62. 62.
    Smit M, Romijn JC, Wildhagen MF, et al. Decreased sperm DNA fragmentation after surgical varicocelectomy. J Urol. 2013;189(Suppl 1):S146–50.Google Scholar
  63. 63.
    Li F, Yamaguchi K, Okada K, et al. Significant improvement of sperm DNA quality after microsurgical repair of varicocele. Syst Biol Reprod Med. 2012;58(5):274–7.CrossRefGoogle Scholar
  64. 64.
    La Vignera S, Condorelli R, Vicari E, et al. Effects of varicocelectomy on sperm DNA fragmentation, mitochondrial function, chromatin condensation, and apoptosis. J Androl. 2012;33(3):389–96.CrossRefGoogle Scholar
  65. 65.
    Ni K, Steger K, Yang H, et al. Sperm protamine mRNA ratio and DNA fragmentation index represent reliable clinical biomarkers for men with varicocele after microsurgical varicocele ligation. J Urol. 2014;192(1):170–6.CrossRefGoogle Scholar
  66. 66.
    Asadi N, Bahmani M, Kheradmand A, Rafieian-Kopaei M. The impact of oxidative stress on testicular function and the role of antioxidants in improving it: a review. J Clin Diagn Res. 2017;11(5):IE01–5.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Rizvi S, Raza sT, Ahmed F, et al. The role of vitamin E in human health and some diseases. Sultan Qaboos Univ Med J. 2014;14(2):e157–65.PubMedCentralPubMedGoogle Scholar
  68. 68.
    Geva E, Bartoov B, Zabludovsky N, et al. The effect of antioxidant treatment on human spermatozoa and fertilization rate in an in vitro fertilization program. Fertil Steril. 1996;66(3):430–4.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Suleiman SA, Ali ME, Zaki ZM, et al. Lipid peroxidation and human sperm motility: protective role of vitamin E. J Androl. 1996;17(5):530–7.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Padayatty S, Levine M. Vitamin C physiology: the known and the unknown and Golilocks. Oral Dis. 2016;22(6):463–93.PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Chan AC. Partners in defense, vitamin E and vitamin C. Can J Physiol Pharmacol. 1993;71(9):725–31.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Greco E, Romano S, Iacobelli M, et al. ICSI in cases of sperm DNA damage: beneficial effect of oral antioxidant treatment. Hum Reprod. 2005;20(9):2590–4.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Kodama H, Yamaguchi R, Fukuda J, et al. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril. 1997;68(3):519–24.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Omu AE, Al-Azemi MK, Kehinde EO, et al. Indications of the mechanisms involved in improved sperm parameters by zinc therapy. Med Princ Pract. 2008;17(2):108–16.CrossRefGoogle Scholar
  75. 75.
    Crane FL. Biochemical functions of coenzyme Q10. J Am Coll Nutr. 2001;20(6):591.CrossRefGoogle Scholar
  76. 76.
    Nadjarzadeh A, Sadeghi MR, Amirjannati N, et al. Coenzyme Q10 improves seminal oxidative defense but does not affect on semen parameters in idiopathic oligoasthenoteratozoospermia: a randomized double-blind, placebo controlled trial. J Endocrinol Investig. 2011;34(8):e224–8.Google Scholar
  77. 77.
    Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Asp Med. 2009;30(1–2):1–12.CrossRefGoogle Scholar
  78. 78.
    Vernet P, Aitken RJ, Drevet JR. Antioxidant strategies in the epididymis. Mol Cell Endocrinol. 2004;216(1–2):31–9.CrossRefGoogle Scholar
  79. 79.
    Lenzi A, Picardo M, Gandini L, et al. Glutathione treatment of dyspermia: effect on the lipoperoxidation process. Hum Reprod. 1994;9(11):2044–50.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Bremer J. Carnitine—metabolism and functions. Physiol Rev. 1983;63(4):1420–80.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Lenzi A, Lombardo F, Sgro P, et al. Use of carnitine therapy in selected cases of male factor infertility: a double-blind crossover trial. Fertil Steril. 2003;79(2):292–300.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Vicari E, La Vignera S, Calogero AE. Antioxidant treatment with carnitines is effective in infertile patients with prostatovesiculoepididymitis and elevated seminal leukocyte concentrations after treatment with nonsteroidal anti-inflammatory compounds. Fertil Steril. 2002;78(6):1203–8.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Cavallini G, Ferraretti AP, Gianaroli L, Biagiotti G, Vitali G. Cinnoxicam and L-carnitine/acetyl carnitine treatment for idiopathic and varicocele associated oligoasthenospermia. J Androl. 2004;25(5):761–70.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Showell MG, Mackenzie-Proctor R, Brown J, et al. Antioxidants for male subfertility. Cochrane Database Syst Rev. 2014;(12):CD007411.Google Scholar
  85. 85.
    Azizollahi G, Azizollahi S, Babaei H, Kianinejad M, Baneshi MR, Nematollahi-mahani SN. Effects of supplement therapy on sperm parameters, protamine content and acrosomal integrity of varicocelectomized subjects. J Assist Reprod Genet. 2013;30(4):593–9.PubMedCentralCrossRefPubMedGoogle Scholar
  86. 86.
    Chen YW, Niu YH, Wang DQ, et al. Effect of adjuvant drug therapy after varicocelectomy on fertility outcome in males with varicocele-associated infertility: systemic review and meta-analysis. Andrologia. 2018;50(8):e13070.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Glickman Urological and Kidney Institute, Cleveland Clinic Lerner College of MedicineClevelandUSA
  2. 2.Glickman Urologic and Kidney Institute, Cleveland ClinicClevelandUSA

Personalised recommendations