Skip to main content

Wood Cell Wall Structure and Organisation in Relation to Mechanics

  • Chapter
  • First Online:
Plant Biomechanics

Abstract

The wood cell wall, as well as the entire wood structure, is a highly intermixed assembly of biopolymers building up various structural elements. The understanding of the organisation of these wood polymers and their interaction is a key to be able to better utilise wood materials. The complexity of the wood cell wall is here discussed regarding the cellulose fibrillar network, the cellulose aggregate structure and the arrangement of the matrix polymers of hemicelluloses and lignin. The ability to model the wood cell wall properties, based on the structural organisation within different cell wall structures, and the difficulties in relating predictions to actual measurements of cell wall properties are described. The deficiencies regarding our structural knowledge in relation to mechanical properties are also being defined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Yamamoto H (2005) Mechanical interaction between cellulose microfibril and matrix substance in wood cell wall determined by X-ray diffraction. J Wood Sci 51:334–338

    Article  CAS  Google Scholar 

  • Adusumalli R-B, Raghavan R, Ghislni R, Zimmermann T, Michler J (2010) Deformation and failure mechanism of secondary cell wall in Spruce late wood. Appl Phys A 100:447–452

    Article  CAS  Google Scholar 

  • Ã…kerholm M, Salmén L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42(3):963–969

    Article  Google Scholar 

  • Altaner CM, Jarvis MC (2008) Modelling polymer interactions of the ‘molecular Velcro’ type in wood under mechanical stress. J Theor Biol 253:434–445

    Article  CAS  PubMed  Google Scholar 

  • Arnould O, Arinero R (2015) Towards a better understanding of wood cell wall characterisation with contact resonance atomic force microscopy. Compos A 74(69–76)

    Article  CAS  Google Scholar 

  • Atalla RH, Agarwal UP (1985) Raman microprobe evidence for lignin orientation in the cell walls of native woody tissue. Sience 227:636–639

    Article  CAS  Google Scholar 

  • Bardage S, Donalson L, Tokoh C, Daniel G (2004) Ultrastructure of the cell wall of unbeaten Norway spruce pulp fibre surfaces. NPPJ 19(4):448–452

    CAS  Google Scholar 

  • Bergander A, Salmén L (2000a) The transverse elastic modulus of the native wood fibre wall. J Pulp Pap Sci 26(6):234–238

    CAS  Google Scholar 

  • Bergander A, Salmén L (2000b) Variations in transverse fibre wall properties: relations between elastic properties and structure. Holzforschung 54(6):655–661

    Article  Google Scholar 

  • Bergander A, Salmén L (2002) Cell wall properties and their effects on mechanical properties of fibers. J Mater Sci 37(1):151–156

    Article  CAS  Google Scholar 

  • BergenstrÃ¥hle M, Berglund lA, Mazeau K (2007) Thermal response in crystalline Iâ cellulose: a molecular dynamics study. J Phys Chem B 111:9138–9145

    Article  CAS  PubMed  Google Scholar 

  • Boyd JD (1982) An anatomical explanation for visco-elastic and mechanosorptive creep in wood, and effects of loading rate on strength. New perspective in wood anatomy. P

    Google Scholar 

  • Brändström J, Bardage SL, Daniel G, Thomas N (2003) The structural organisation of the S1 cell wall layer of Norway spruce tracheids. IAWA J 24(1):27–40

    Article  Google Scholar 

  • Burgert I (2006) Exploring the micromechanical design of plant cell walls. Am J Bot 93(10):1391–1406

    Article  PubMed  Google Scholar 

  • Cave ID (1968) The anisotropic elasticity of the plant cell wall. Wood Sci Technol 2:268–278

    Article  Google Scholar 

  • Cave ID (1969) The longitudinal Young’s modulus of Pinus radiata. Wood Sci Technol 3:40–48

    Article  Google Scholar 

  • Chanzy H, Henrissat B (1985) Unidirectional degradation of Valonia cellulose micrystals subjected to cellulase action. FEBS Lett 184:285–288

    Article  CAS  Google Scholar 

  • de Borst K, Bader TK (2014) Structure-function relationships in hardwood—insight from micromechanical modellig. J Theor Biol 345:78–91

    Article  PubMed  Google Scholar 

  • Donalson LA (2001) A three-dimensional computer model of the tracheid cell wall as a tool for interpretations of wood cell wall ultrastructure. IAWA J 29(4):345–386

    Article  Google Scholar 

  • Dong F, Olsson A-M, Salmén L (2010) Fibre morphological effects on mechano-sorptive creep. Wood Sci Technol 44(3):475–483

    Article  CAS  Google Scholar 

  • Eder M, Arnould O, Dunlop JWC, Hornatowska J, Salmen L (2013) Experimental micromechanical characterisation of wood cell walls. Wood Sci Technol 47:163–182

    Article  CAS  Google Scholar 

  • Fahlén J, Salmén L (2002) On the lamellar structure of the tracheid cell wall. Plant Biol 4:339–345

    Article  Google Scholar 

  • Fahlén J, Salmén L (2005) Pore and matrix distribution in the fibre wall revealed by atomic force microscopy and image analysis. Biomacromol 6(1):433–438

    Article  CAS  Google Scholar 

  • Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. PNAS 108(47):1195–1203

    Article  Google Scholar 

  • Fratzl P (2003) Cellulose and collagen: from fibres to tissues. Currrent opin. colloid interface sci. 8:32–39

    Article  CAS  Google Scholar 

  • Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9:2749–2786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gierlinger N, Schwanninger M, Reinecke A, Burgert I (2006) Molecular changes during tensile deformation of single wood fibres followed by Raman microscopy. Biomacromol 7:2077–2081

    Article  CAS  Google Scholar 

  • Gindl W, Gupta HS, Schöberl T, Lichtenegger HC, Fratzl P (2004) Mechanical properties of spruce wood cell walls by nanoindentation. Appl Phys A 79:2069–2073

    Article  CAS  Google Scholar 

  • Hieta K, Kuga S, Usuda M (1984) Electron staining of reducing ends evidences a parallel-chain structure in Valonia cellulose. Biopolymers 23:1807–1810

    Article  CAS  Google Scholar 

  • Hofstetter K, Gamstedt EK (2009) Hierarchical modelling of microstructural effects on mechanical properties of wood. A review. Holzforschung 63:130–138

    Article  CAS  Google Scholar 

  • Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromol 10(9):2571–2576

    Article  CAS  Google Scholar 

  • Joffre T, Isaksson P, Dumont PJJ, Roscoat SR, Sticko S, Orgéas L, Gamstedt EK (2016) A method to measure moisture induced swelling properties of a single wood cell. Experimental Mechanics On-line

    Article  Google Scholar 

  • Joffre T, Neagu RC, Bardage SL, Gamstedt EK (2014) Modelling of the hygroelastic behaviour of normal and compression wood tracheids. J Struct Biol 185:89–98

    Article  CAS  PubMed  Google Scholar 

  • Keckes J, Burgert I, Frûhmann K, Mûller M, Kölln K, Hamilton M, Burghammer M, Roth SV, Stanzl-Tschegg SE, Fratzl P (2003) Cell-wall recovery after irreversible deformation of wood. Nat Mater 2:810–814

    Article  CAS  PubMed  Google Scholar 

  • Kerr AJ, Goring DAI (1975) The ultrastructural arrangement of the wood cell wall. Cell Chem Technol 9(6):563–573

    Google Scholar 

  • Kolseth P, Ehrnrooth EML (1986) Mechanical softening of single wood pulp fibers. In: Bristow JA, Kolseth P (eds) Paper structure and properties. Marcel Dekker Inc, New York, pp 27–50

    Google Scholar 

  • Kroon-Batenburg LM, Kroon J, Norholt MG (1986) Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibers. Polym Commun 27:290–292

    Article  CAS  Google Scholar 

  • Li W, Wang H, Wang H, Yu Y (2014) Moisture dependence of indentation deformation and mechanical properties of mason pine (Pinus Massoniana Lamb) cell walls as related to microfibrilar angle. Wood Fiber Sci 46(2):228–236

    CAS  Google Scholar 

  • Lindh EL, Salmén L (2017) Surface accessibility of cellulose fibrils studied by hydrogen-deuterium exchange with water. Cellulose 24:21–33

    Article  CAS  Google Scholar 

  • Lindh EL, Terenzia C, Salmén L, Furó I (2017) Water in cellulose: evidence and identification of immobile and mobile adsorbed phases by 2H MAS NMR. PCCP

    Article  CAS  PubMed  Google Scholar 

  • Mark RE (1972) Mechanical behaviour of the molecular components of fibers. In: Jayne BA (ed) Theory and design of wood and fiber composite materials. Syracuse University Press, Syracuse, pp 49–82

    Google Scholar 

  • Matsuo M, Sawatari C, Iwai Y, Ozaki F (1990) Effect of orientation distribution and crystallinity on the measurement by X-ray diffraction of the crystal lattice moduli of cellulose I and II. Macromolecules 23(13):3266–3275

    Article  CAS  Google Scholar 

  • Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Bradya JW (2006) Computer simulation studies of microcrystalline cellulose Ib. Carbohydr Res 341:138–152

    Article  CAS  PubMed  Google Scholar 

  • Nakai T, Yamamoto H, Nakano T, Hamatake M (2006) Mechanical behavior of the crystal lattice of natural cellulose in wood under repeated uniaxial tensile stress in the fiber direction. Wood Sci Technol 40:683–695

    Article  CAS  Google Scholar 

  • Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci, Part B: Polym Phys 33(11):1647–1651

    Article  CAS  Google Scholar 

  • Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Ib from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Olsson A-M, Salmén L (1997) The effect of lignin structure on the viscoelastic properties of wood. Nordic Pulp Pap Res J 12(3):140–144

    Article  CAS  Google Scholar 

  • Olsson A-M, Salmén L (2014) Mechano-sorptive creep in pulp fibres and paper. Wood Sci Technol 48(3):569–580

    Article  CAS  Google Scholar 

  • Raghavan R, Adusumalli R-B, Buerki G, Hansen S, Zimmermann T, Michler J (2012) Deformation of the compound middle lamella in spruce latewood by micro-pillar compression of double cell walls. J Mater Sci 47:6125–6130

    Article  CAS  Google Scholar 

  • Revol J-F, Goring DAI (1983) Directionality of the fibre c-axis of cellulose crystallites in microfibrils of Valonia ventricosa. Polymer 24:1547–1550

    Article  CAS  Google Scholar 

  • Reza M (2016) Study of Norway spruce wall structure with microscopy tools. Applied physics. Helsinki, Aalto University. PhD

    Google Scholar 

  • Reza M, Ruokolainen J, Vourinen T (2014) Out-of-plane orientation of cellulose elementary fibrils on spruce tracheid wall based on imaging with high-resolution transmission electroc microscopy. Planta 240:565–573

    Article  CAS  PubMed  Google Scholar 

  • Sakurada I, Nukushima Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660

    Article  CAS  Google Scholar 

  • Salmén L (1982) Temperature and water induced softening behaviour of wood fibre based materials. PhD thesis, KTH, Stockholm

    Google Scholar 

  • Salmén L (2004) Micromechanical understanding of the cell-wall structure. CR Biologies 337:873–880

    Article  CAS  Google Scholar 

  • Salmén L (2007) The mechanical deformation of wood—relation to ultrastructure. In: Entwistle KM, Walker CF (eds) The comprised wood workshop 2007. University of Canterbury, Christchurch, New Zeeland, pp 143–157

    Google Scholar 

  • Salmén L, Bergström E (2009) Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR. Cellulose 16(6):975–982

    Article  CAS  Google Scholar 

  • Salmén L, de Ruvo A (1985) A model for the prediction of fiber elasticity. Wood Fiber Sci 17(3):336–350

    Google Scholar 

  • Salmén L, Kolseth P, de Ruvo A (1985) Modeling the softening behavior of wood fibers. J Pulp Pap Sci 11(4):J102–J107

    Google Scholar 

  • Salmén L, Olsson A-M, Stevanic JS, Simonovic J, Radotic K (2012) Structural organisation of the wood polymers in the wood fibre structure. Bioresources 7(1):521–532

    Google Scholar 

  • Salmén L, Stevanic JS, Olsson A-M (2016) Contribution of lignin to the strength properties in wood fibres studied by dynamic FTIR spectroscopy and dynamic mechanical analysis (DMA). Holzforschung 70(12):1155–1163

    Article  CAS  Google Scholar 

  • Schwiedrzik J, Raghavan R, Rüggeberg M, Hansen S, Wehrs J, Adusumalli RB, Zimmermann T, Michler J (2016) Identification of polymer matrix yield stress in the wood cell wall based on micropillar compression and micromechanical modelling. Philos Mag 96(32–34):3461–3478

    Article  CAS  Google Scholar 

  • Sell J, Zimmermann T (1993) Radial fibril agglomerations of the S2 on transverse-fracture surfaces of tracheids of tension-loaded spruce and white fir. Holz Roh Werkstoff 51:384

    Article  Google Scholar 

  • Simonovic J, Stevanic J, Djikanovic D, Salmen L, Radotic K (2011) Anisotropy of cell wall polymers in branches of hardwood and softwood: a polarized FTIR study. Cellulose 18(6):1433–1440

    Article  CAS  Google Scholar 

  • Spatz H-C, Köhler L, Niklas KJ (1999) Mechanical behaviour of plant tissues: composite materials or structures? J Exp Biol 202:3269–3272

    PubMed  CAS  Google Scholar 

  • Stone J, Scallan AM, Ahlgren PAV (1971) The ultrastructural distribution of lignin in tracheid cell walls. Tappi 54:1527–1530

    CAS  Google Scholar 

  • Tanaka F, Iwata T (2006) Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation. Cellulose 13:509–517

    Article  CAS  Google Scholar 

  • Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32(8):1516–1526

    Article  CAS  Google Scholar 

  • Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesized by acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5:249–261

    Article  CAS  Google Scholar 

  • Wagner L, Bos C, Bader TK, de Borst K (2015) Effect of water on the mechanical properties of wood cell walls—results of a nanoindentation study. Bioresources 10(3):4011–4025

    Article  CAS  Google Scholar 

  • Wang N, Liu W, Peng Y (2013) Gradual transition zone between cell wall layers and its influence on wood elastic modulus. J Mater Sci 48(14):5071–5084

    Article  CAS  Google Scholar 

  • Wang N, Wangyn L, Lai J (2014a) An attempt in model the influence of gradual transition between cell wall layers on cell wall hygroelastic properties. J Mater Sci 49:1984–1993

    Article  CAS  Google Scholar 

  • Wang X, Keplinger T, Gierlinger N, Burgert I (2014b) Plant material features responsible for bamboo’s excellent mechanical performance: a comparison of tensile properties of bamboo and spruce at the tissue, fibre and cell wall levels. Ann Bot 8:1627–1635

    Article  CAS  Google Scholar 

  • Wang X, Li Y, Deng Y, Yu W, Xie X, Wang S (2016) Contribution of basic chemical components to the mechanical behavior of wood fiber cell walls as evaluated by nanoindentation. Bioresources 11(3):6026–6039

    CAS  Google Scholar 

  • Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS carbon 13 NMR spectroscopy. Carbohydr Res 312(3):123–129

    Article  CAS  Google Scholar 

  • Yamamoto H, Koijima Y (2002) Properties of cell wall constituents in relation to longitudinal elasticity of wood. Wood Sci Technol 36:55–74

    Article  CAS  Google Scholar 

  • Yu Y, Fei B, Wang H, Tian G (2011) Longitudinal mechanical properties of cell wall of Masson pine (Pinus massoniana Lamb) as related to moisture content: A nanoindentation study. Holzforschung 65:121–126

    CAS  Google Scholar 

  • Zhang S-Y, Fei B-H, Wang C-G (2016) Effects of chemical extraction treatment on nano-scale mechanical properties of the wood cell wall. Bioresources 11(3):7365–7376

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennart Salmén .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salmén, L. (2018). Wood Cell Wall Structure and Organisation in Relation to Mechanics. In: Geitmann, A., Gril, J. (eds) Plant Biomechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-79099-2_1

Download citation

Publish with us

Policies and ethics