Skip to main content

Methods for Protection-Level Evaluation with Augmented Data

  • Chapter
  • First Online:
Book cover GNSS for Rail Transportation

Part of the book series: PoliTO Springer Series ((PTSS))

  • 685 Accesses

Abstract

This chapter describes how an augmentation system can support a GNSS receiver of a vehicle (more in general a mobile object) in the PL evaluation. Since this approach has been firstly adopted in aviation, and it is already operative in some airports, we will describe a generic LAAS architecture, as a typical example of a GBAS, tailored to improve the performance of a GNSS receiver in terms of accuracy and integrity. The major components and features of LAAS will be detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Aviation Safety Agency (2013) Air operations commercial air transport. http://www.eraa.org/system/files/Air%20OPS%20CAT%20Hard%20and%20Soft.pdf

  2. http://www.novatel.com/assets/Documents/Papers/cma-4048.pdf

  3. Enge P (1999) Local area augmentation of GPS for the precision approach of aircraft. Proc IEEE 87(1):111–132

    Google Scholar 

  4. Kaplan E, Hegarty C (2006) Undestanding GPS: principles and applications, 2nd edn. Artech House

    Google Scholar 

  5. Misra P, Enge P (2006) Global positioning system. Signal measurements and performance. Ganga-Jamuna Press, Lincoln

    Google Scholar 

  6. Petovello M, Presti LL, Visintin M (2016) Can you list all the properties of the carrier-smoothing filter? INSIDE GNSS 10(4)

    Google Scholar 

  7. FAA Faa-e-2937, 21 Sept 1999

    Google Scholar 

  8. Farrell J, Givargis T (2000) Differential GPS reference station algorithm-design and analysis. IEEE Trans Control Syst Technol 8(3):519–531 (2000)

    Google Scholar 

  9. Perepetchai V (2000) Global positioning system receiver autonomous integrity monitoring. Master’s thesis, School of Computer Science, McGill University, Montreal

    Google Scholar 

  10. Braff R (2001) LAAS performance for terminal area navigation. Work tech papers, Mitre

    Google Scholar 

  11. Lee J, Pullen S, Enge P (2006) Sigma-mean monitoring for the local area augmentation of GPS. IEEE Trans Aerosp Electron Syst 42(2):625–635

    Google Scholar 

  12. Lee J, Pullen S, Enge P (2009) Sigma overbounding using a position domain method for the local area augmentaion of GPS. IEEE Trans Aerosp Electron Syst 45(4):1262–1274

    Google Scholar 

  13. Shively C, Braff R (2000) An overbound concept for pseudorange error from the LAAS ground facility. In: Proceedings of IAIN world congress/ION 56th annual meeting, San Diego, CA, pp. 661–671, 26–28 June 2000

    Google Scholar 

  14. Pervan B, Sayim I (2001) Sigma inflation for the local area augmentation of GPS. IEEE Trans Aerosp Electron Syst 37(4):13011311

    Google Scholar 

  15. Gleason S (2009) GNSS applications and methods - GNSS technology and applications. Artech House

    Google Scholar 

  16. Salos D, Macabiau C, Martineau A, Bonhoure B, Kubrak D (2010) Nominal GNSS pseudorange measurement model for vehicular urban applications. In: Position location and navigation symposium (PLANS), pp 806 – 815

    Google Scholar 

  17. Rife J, Pervan B (2012) Overbounding revisited: discrete error-distribution modeling for safety-critical GPS navigation. IEEE Trans Aerosp Electron Syst 48(2)

    Google Scholar 

  18. Dautermann T, Mayer C, Antreich F, Konovaltsev A, Belabbas B, Kalberer U (2012) Non-gaussian error modeling for GBAS integrity assessment. IEEE Trans Aerosp Electron Syst 48(1):693–706

    Google Scholar 

  19. Kalafus R (1993) A new error source in differential GNSS operations. Technical report, Trimble Navigation

    Google Scholar 

  20. Edgar C et al (1999) A co-operative anomaly-resolution on PRN-19. In: Proceedings of 12th international technical meeting of the satellite division of the institute of navigation, Nashville

    Google Scholar 

  21. Pagot J-B (2016) Modeling and monitoring of new GNSS Signal distortions in the context of civil aviation. Ph.d. dissertation, Institut Nationale Polytechnique de Toulouse (INP Toulouse)

    Google Scholar 

  22. http://gpsworld.com/innovation-evil-waveforms-generating-distorted-gnss-signals-using-a-signalsimulator/

  23. Phelts RE, Akos DM, Enge P (2000) Robust signal quality monitoring and detection of evil waveform. In: Proceedings of ION GPS 2000, 13th international technical meeting of the satellite division of the institute of navigation, Salt Lake City

    Google Scholar 

  24. Phelts RE, Walter T, Enge P (2009) Toward real-time SQM fro WAAS: improved detection techniques. In: Proceedings of ION GNSS conference in Portland

    Google Scholar 

  25. Phelts RE, Akos DM, Enge P (2000) Robust signal quality monitoring and detection of evil waveforms. In: Proceedings of ION GPS 2000, Salt Lake City, Utah

    Google Scholar 

  26. Phelts RE (2001) Multicorrelator techniques for robust mitigation of threats to GPS signal quality. Ph.D. dissertation, Standford University, Palo Alto, California

    Google Scholar 

  27. Fantino M et al (2009) Signal quality monitoring: Correlation mask based on ratio test metrics for multipath detection. In: Proceedings of international global navigation satellite systems society, IGNSS symposium 2009 surfers. Paradise, Australia, 1–3 December 2009

    Google Scholar 

  28. Ledvina B, Bencze W, Galusha B, Miller I (2010) An in-line anti-spoofing device for legacy civlil GPS receivers. In: Institute of Navigation ITM Conference, San Diego, CA, 26 Jan 2010

    Google Scholar 

  29. JPL. https://iono.jpl.nasa.gov/gim.html

  30. European Space Weather Portal. http://spaceweather.eu/swwt/ionosphere

  31. Kintner P, Humphreys T, Hinks J (2009) GNSS and ionospheric scintillation. Inside GNSS

    Google Scholar 

  32. Satya Srinivas V, Sarma AD, Supraja Reddy A, Krishna Reddy D (2014) Investigation of the effect of ionospheric gradients on GPS signals in the context of LAAS. Prog Electromag Res B 57:191–205

    Google Scholar 

  33. Miguel Juan J, Sanz J, Prieto R, Schlueter S (2013) Ionospheric activity in the South East Asian region. In: ICSANE 2013 international conference on space, Aeronautical and navigational electronics 2013, Hanoi, Vietnam. 2 Dec 2013

    Google Scholar 

  34. Lee J, Pullen S, Datta-Barua S, Enge P (2007) Assessment of ionosphere spatial decorrelation for global positioning system-based aircraft landing systems. J Aircr 44(5)

    Google Scholar 

  35. Indonesia (2010) Ionosphere characterization in asutralia to support GBAS implementation. Fourteen meeting of the communication/navigation/surveillance and meterorology sub-group of Apanpirg (CNS/MET SG/14), Jakarta, 19 July 22

    Google Scholar 

  36. Mayer C, Belabbas B, Jakowski N, Meurer M, Dunkel W (2009) Ionosphere threat space model assessment for GBAS. In: ION GNSS 2009, Savannah, GA, USA, 22–25 Sept 2009

    Google Scholar 

  37. Simili DV, Pervan B (2006) Code-carrier divergence monitoring for the GPS local area augmentation system. In: IEEE/ION position, location, and navigation symposium

    Google Scholar 

  38. Xie G, Pullen S, Luo M, Enge P (2009) Detecting ionospheric gradients with the cumulative sum (CUSUM) method. In: 21st international communications satellite systems conference and exhibit, Yokohama, Japan

    Google Scholar 

  39. Ming L, Sam P, Jed D, Hiroyuki K, Gang X, Todd W, Enge P, DattaBarua S, Dehel T (2003) LAAS ionosphere spatial gradient threat model and impact of LGF and airborne monitoring. ION GPS/GNSS, Portland, OR, 9–12 Sept 2003

    Google Scholar 

  40. Pullen S, Enge P (2007) An overview of GBAS integrity monitoring with a focus on ionospheric spatial anomalies. Indian J Radio Space Phy 36:249–260

    Google Scholar 

  41. Tang H, Pullen S, Enge P, Gratton L, Pervan B, Brenner M, Scheitlin J, Kline P (2010) Ephemeris type a fault analysis and mitigation for LAAS. In: IEEE/ION position location and navigation symposium (PLANS), Indian Wells, CA, USA, pp 654–666, 4–6 May 2010

    Google Scholar 

  42. Pervan B, Gratton L (2005) Orbit ephemeris monitors for local area differential GPS. IEEE Trans Aerosp Electron Syst 41(2): 449–460

    Google Scholar 

  43. Pullen S (2001) Tutorial presentation: augmented GNSS: fundamentals and keys to integrity and continuity. http://www-leland.stanford.edu

  44. Rife J, Pullen S, Enge P (2009) Evaluating fault-mode protection levels at the aircraft in category III LAAS. In: Proceedings of the 63rd annual meeting of the institute of navigation, Cambridge, MA, pp 356–371

    Google Scholar 

  45. Ansaldo STS (2017) Roy hill signalling & communications - system generic application safety case verification report, Doc. Number 000091.R11.EN Rev. 06.00, 27 July 2017

    Google Scholar 

  46. Ansaldo STS (2017) Satellite assisted railway application - LDS generic product and application safety case, Doc. Number P60A.0100001.A01.07EN Rev. 05.00, 01 June 2017

    Google Scholar 

  47. Marais J, Beugin J, Berbineau M (2017) A survey of GNSS-based research and developments for the european railway signalinog. IEEE Trans Intell Transp Syst PP(99):1–17

    Google Scholar 

  48. ESA. https://business.esa.int/projects/3insat

  49. Ansaldo STS. https://medsalt.files.wordpress.com/2016/09/10-ricercainnov-ita-mar-2017.pdf

  50. FS news. http://www.fsnews.it/fsn/Sala-stampa/Cartelle-stampa/ERSAT-EAV-conclusi-test-tecnologie-satellitari-traffico-ferroviario-regionale

  51. UNIFE. http://www.unife.org/

  52. Nikiforov Igor V, Choquette Franois (2003) Integrity equations for safe train positioning using GNSS. Atti dell’Istit Ital di Navig 171:52–77

    Google Scholar 

  53. Zhu N, Marais J, Btaille D, Berbineau M (2017) Evaluation and comparison of gnss navigation algorithms including fde for urban transport applications. In: ION international technical meeting, Monterey, United States

    Google Scholar 

  54. Legrand C, Beugin J, Conrard B, El-Miloudi E-K (2015) Approach for evaluating the safety of a satellite-based train localisation system through the extended integrity concept. In: European safety and reliability conference, Zürich, Switzerland

    Google Scholar 

  55. Wendel J, Schubert F, Floch J-J, Ioannides R, Wullems C (2016) GNSS-based integrity for railway users using map-aided solution separation. NAVITEC ESA/ESTEC, The Netherlands, 14–16 Dec 2016

    Google Scholar 

  56. Schubert F, Gulie I, Wendel J, Wullems C, Ioannides R, Kohl R (2016) A geometrical-statistical multipath propagation model for railway navigation applications. NAVITEC ESA/ESTEC, The Netherlands, 14–16 Dec 2016

    Google Scholar 

  57. Grosch A, Crespillo OG, Martini I, Gnther C (2017) Snapshot residual and Kalman filter based fault detection and exclusion schemes for robust railway navigation. In: European navigation conference (ENC), Lausanne, Switzerland, pp 36–47, 9-12 May 2017

    Google Scholar 

  58. Albanese A, Marradi L, Labbiento G, Venturi G (2005) The RUNE project: the integrity performances of GNSS-based railway user navigation equipment. In: Proceedings of joint rail conference, Pueblo, Colorado, 16–18 Mar 2005

    Google Scholar 

  59. European GNSS Agency (GSA). http://www.ersat-eav.eu/

  60. ESA. https://business.esa.int/projects/sbsrails

  61. Rispoli F, Filip A, Castorina A, Di Mambro G, Neri A, Senesi F (2013) Recent progress in application of GNSS and advanced communications for railway signaling. In: 23rd international conference Radioelektronika, 16–17 Apr 2013

    Google Scholar 

  62. Neri A, Filip A, Rispoli F, Vegni AM (2012) An analytical evaluation for hazardous failure rate in a satellite-based train positioning system with reference to the ERTMS train control systems. In: Proceedings of the 25th international technical meeting of the satellite division of the institute of navigation (ION GNSS), Nashville, TN, pp. 2770–2784

    Google Scholar 

  63. Filip A, Baant L, Mocek H (2010) The experimental evaluation of the EGNOS safety-of-life services for railway signalling. WIT Trans Built Environ 114:549–560

    Google Scholar 

  64. Shin K-H, Shin D, Joung E-J, Kim Y-G (2008) The reliability and safety enhancement method of GNSS for train control application. In: The 23rd international technical conference on circuits/systems computers and Communications (ITC-CSCC)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Letizia Lo Presti or Marco Pini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lo Presti, L., Pini, M. (2018). Methods for Protection-Level Evaluation with Augmented Data. In: Lo Presti, L., Sabina, S. (eds) GNSS for Rail Transportation. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-319-79084-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-79084-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-79083-1

  • Online ISBN: 978-3-319-79084-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics