Skip to main content

Post-Quantum Zero-Knowledge Proofs for Accumulators with Applications to Ring Signatures from Symmetric-Key Primitives

  • Conference paper
  • First Online:
Post-Quantum Cryptography (PQCrypto 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10786))

Included in the following conference series:

Abstract

In this paper we address the construction of privacy-friendly cryptographic primitives for the post-quantum era and in particular accumulators with zero-knowledge membership proofs and ring signatures. This is an important topic as it helps to protect the privacy of users in online authentication or emerging technologies such as cryptocurrencies. Recently, we have seen first such constructions, mostly based on assumptions related to codes and lattices. We, however, ask whether it is possible to construct such primitives without relying on structured hardness assumptions, but solely based on symmetric-key primitives such as hash functions or block ciphers. This is interesting because the resistance of latter primitives to quantum attacks is quite well understood.

In doing so, we choose a modular approach and firstly construct an accumulator (with one-way domain) that allows to efficiently prove knowledge of (a pre-image of) an accumulated value in zero-knowledge. We, thereby, take care that our construction can be instantiated solely from symmetric-key primitives and that our proofs are of sublinear size. Latter is non trivial to achieve in the symmetric setting due to the absence of algebraic structures which are typically used in other settings to make these efficiency gains. Regarding efficient instantiations of our proof system, we rely on recent results for constructing efficient non-interactive zero-knowledge proofs for general circuits. Based on this building block, we then show how to construct logarithmic size ring signatures solely from symmetric-key primitives. As constructing more advanced primitives only from symmetric-key primitives is a very recent field, we discuss some interesting open problems and future research directions. Finally, we want to stress that our work also indirectly impacts other fields: for the first time it raises the requirement for collision resistant hash functions with particularly low AND count.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://csrc.nist.gov/groups/ST/post-quantum-crypto/.

  2. 2.

    https://trustedcomputinggroup.org/tpm-library-specification/.

  3. 3.

    https://getmonero.org/resources/moneropedia/ringsignatures.html.

  4. 4.

    This is a stronger variant of FS (cf. [12, 28]). The original weaker variant of the FS transform does not include the statement x in the challenge computation.

  5. 5.

    A trusted setup somehow undermines the idea behind ring signatures.

  6. 6.

    If this is not the case, one can always add dummy keys to the ring to satisfy this condition.

  7. 7.

    Numbers updated according to a personal discussion with Christian Rechberger.

References

  1. Abdalla, M., Warinschi, B.: On the minimal assumptions of group signature schemes. In: Lopez, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 1–13. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30191-2_1

    Chapter  Google Scholar 

  2. Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient encryption and cryptographic hashing with minimal multiplicative complexity. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 191–219. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_7

    Chapter  Google Scholar 

  3. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_17

    Google Scholar 

  4. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. IACR Cryptology ePrint Archive 2016, 687 (2016)

    Google Scholar 

  5. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sublinear arguments without a trusted setup. In: CCS (2017)

    Google Scholar 

  6. Baldimtsi, F., Camenisch, J., Dubovitskaya, M., Lysyanskaya, A., Reyzin, L., Samelin, K., Yakoubov, S.: Accumulators with applications to anonymity-preserving revocation. In: IEEE EuroS&P 2017 (2017)

    Google Scholar 

  7. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_33

    Google Scholar 

  8. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_38

    Chapter  Google Scholar 

  9. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.: Zerocash: decentralized anonymous payments from bitcoin. In: IEEE SP (2014)

    Google Scholar 

  10. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_24

    Google Scholar 

  11. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and constructions without random oracles. J. Cryptol. 22(1), 114–138 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of the fiat-shamir heuristic and applications to helios. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_38

    Chapter  Google Scholar 

  13. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short accountable ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6_13

    Chapter  Google Scholar 

  14. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: CCS (2004)

    Google Scholar 

  15. Brickell, E., Li, J.: Enhanced privacy ID: a direct anonymous attestation scheme with enhanced revocation capabilities. In: WPES (2007)

    Google Scholar 

  16. Buldas, A., Laud, P., Lipmaa, H.: Accountable certificate management using undeniable attestations. In: CCS (2000)

    Google Scholar 

  17. Camenisch, J., Groth, J.: Group signatures: better efficiency and new theoretical aspects. In: SCN (2004)

    Google Scholar 

  18. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_5

    Chapter  Google Scholar 

  19. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-8_38

    Chapter  Google Scholar 

  20. Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C., Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from symmetric-key primitives. In: CCS (2017)

    Google Scholar 

  21. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_22

    Google Scholar 

  22. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_19

    Google Scholar 

  23. Damgård, I.: On \(\varSigma \)-protocols (2010). http://www.cs.au.dk/~ivan/Sigma.pdf

  24. Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, additional properties and relations to other primitives. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 127–144. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2_7

    Google Scholar 

  25. Derler, D., Orlandi, C., Ramacher, S., Rechberger, C., Slamanig, D.: Digital signatures from symmetric-key primitives. IACR Cryptology ePrint Archive 2016, 1085 (2016)

    Google Scholar 

  26. Derler, D., Slamanig, D.: Key-homomorphic signatures and applications to multiparty signatures and non-interactive zero-knowledge. IACR Cryptology ePrint Archive 2016, 792 (2016)

    Google Scholar 

  27. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in Ad Hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_36

    Chapter  Google Scholar 

  28. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of the fiat-shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7_5

    Chapter  Google Scholar 

  29. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Google Scholar 

  30. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for boolean circuits. In: USENIX Security (2016)

    Google Scholar 

  31. González, A.: A ring signature of size \(\theta (\root 3 \of {n})\) without random oracles. Cryptology ePrint Archive, Report 2017/905 (2017)

    Google Scholar 

  32. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_9

    Google Scholar 

  33. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based accumulators: logarithmic-size ring signatures and group signatures without trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_1

    Chapter  Google Scholar 

  35. Malavolta, G., Schröder, D.: Efficient ring signatures in the standard model. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 128–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_5

    Chapter  Google Scholar 

  36. Melchor, C.A., Cayrel, P.-L., Gaborit, P.: A new efficient threshold ring signature scheme based on coding theory. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 1–16. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88403-3_1

    Chapter  Google Scholar 

  37. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed e-cash from bitcoin. In: IEEE S&P (2013)

    Google Scholar 

  38. Mohamed, M.S.E., Petzoldt, A.: RingRainbow – an efficient multivariate ring signature scheme. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT 2017. LNCS, vol. 10239, pp. 3–20. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57339-7_1

    Chapter  Google Scholar 

  39. NIST: SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. National Institute of Standards and Technology (NIST), FIPS PUB 202, U.S. Department of Commerce (2015)

    Google Scholar 

  40. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32

    Chapter  Google Scholar 

  41. Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_10

    Chapter  Google Scholar 

  42. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_25

    Google Scholar 

  43. Unruh, D.: Computationally binding quantum commitments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 497–527. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_18

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors have been supported by EU H2020 Project Prismacloud, grant agreement n\(^\circ \)644962. We thank Christian Rechberger for discussions on the choice of symmetric-key primitives, especially regarding the instantiation of hash functions using LowMC, as well as for providing us with updated LowMC instances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Ramacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Derler, D., Ramacher, S., Slamanig, D. (2018). Post-Quantum Zero-Knowledge Proofs for Accumulators with Applications to Ring Signatures from Symmetric-Key Primitives. In: Lange, T., Steinwandt, R. (eds) Post-Quantum Cryptography. PQCrypto 2018. Lecture Notes in Computer Science(), vol 10786. Springer, Cham. https://doi.org/10.1007/978-3-319-79063-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-79063-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-79062-6

  • Online ISBN: 978-3-319-79063-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics