Abstract
In this paper we address the construction of privacy-friendly cryptographic primitives for the post-quantum era and in particular accumulators with zero-knowledge membership proofs and ring signatures. This is an important topic as it helps to protect the privacy of users in online authentication or emerging technologies such as cryptocurrencies. Recently, we have seen first such constructions, mostly based on assumptions related to codes and lattices. We, however, ask whether it is possible to construct such primitives without relying on structured hardness assumptions, but solely based on symmetric-key primitives such as hash functions or block ciphers. This is interesting because the resistance of latter primitives to quantum attacks is quite well understood.
In doing so, we choose a modular approach and firstly construct an accumulator (with one-way domain) that allows to efficiently prove knowledge of (a pre-image of) an accumulated value in zero-knowledge. We, thereby, take care that our construction can be instantiated solely from symmetric-key primitives and that our proofs are of sublinear size. Latter is non trivial to achieve in the symmetric setting due to the absence of algebraic structures which are typically used in other settings to make these efficiency gains. Regarding efficient instantiations of our proof system, we rely on recent results for constructing efficient non-interactive zero-knowledge proofs for general circuits. Based on this building block, we then show how to construct logarithmic size ring signatures solely from symmetric-key primitives. As constructing more advanced primitives only from symmetric-key primitives is a very recent field, we discuss some interesting open problems and future research directions. Finally, we want to stress that our work also indirectly impacts other fields: for the first time it raises the requirement for collision resistant hash functions with particularly low AND count.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
A trusted setup somehow undermines the idea behind ring signatures.
- 6.
If this is not the case, one can always add dummy keys to the ring to satisfy this condition.
- 7.
Numbers updated according to a personal discussion with Christian Rechberger.
References
Abdalla, M., Warinschi, B.: On the minimal assumptions of group signature schemes. In: Lopez, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 1–13. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30191-2_1
Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient encryption and cryptographic hashing with minimal multiplicative complexity. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 191–219. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_7
Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_17
Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. IACR Cryptology ePrint Archive 2016, 687 (2016)
Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sublinear arguments without a trusted setup. In: CCS (2017)
Baldimtsi, F., Camenisch, J., Dubovitskaya, M., Lysyanskaya, A., Reyzin, L., Samelin, K., Yakoubov, S.: Accumulators with applications to anonymity-preserving revocation. In: IEEE EuroS&P 2017 (2017)
Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_33
Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_38
Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.: Zerocash: decentralized anonymous payments from bitcoin. In: IEEE SP (2014)
Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_24
Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and constructions without random oracles. J. Cryptol. 22(1), 114–138 (2009)
Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of the fiat-shamir heuristic and applications to helios. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_38
Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short accountable ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6_13
Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: CCS (2004)
Brickell, E., Li, J.: Enhanced privacy ID: a direct anonymous attestation scheme with enhanced revocation capabilities. In: WPES (2007)
Buldas, A., Laud, P., Lipmaa, H.: Accountable certificate management using undeniable attestations. In: CCS (2000)
Camenisch, J., Groth, J.: Group signatures: better efficiency and new theoretical aspects. In: SCN (2004)
Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_5
Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-8_38
Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C., Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from symmetric-key primitives. In: CCS (2017)
Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_22
Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_19
Damgård, I.: On \(\varSigma \)-protocols (2010). http://www.cs.au.dk/~ivan/Sigma.pdf
Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, additional properties and relations to other primitives. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 127–144. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2_7
Derler, D., Orlandi, C., Ramacher, S., Rechberger, C., Slamanig, D.: Digital signatures from symmetric-key primitives. IACR Cryptology ePrint Archive 2016, 1085 (2016)
Derler, D., Slamanig, D.: Key-homomorphic signatures and applications to multiparty signatures and non-interactive zero-knowledge. IACR Cryptology ePrint Archive 2016, 792 (2016)
Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in Ad Hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_36
Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of the fiat-shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7_5
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for boolean circuits. In: USENIX Security (2016)
González, A.: A ring signature of size \(\theta (\root 3 \of {n})\) without random oracles. Cryptology ePrint Archive, Report 2017/905 (2017)
Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_9
Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009)
Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based accumulators: logarithmic-size ring signatures and group signatures without trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_1
Malavolta, G., Schröder, D.: Efficient ring signatures in the standard model. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 128–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_5
Melchor, C.A., Cayrel, P.-L., Gaborit, P.: A new efficient threshold ring signature scheme based on coding theory. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 1–16. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88403-3_1
Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed e-cash from bitcoin. In: IEEE S&P (2013)
Mohamed, M.S.E., Petzoldt, A.: RingRainbow – an efficient multivariate ring signature scheme. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT 2017. LNCS, vol. 10239, pp. 3–20. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57339-7_1
NIST: SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. National Institute of Standards and Technology (NIST), FIPS PUB 202, U.S. Department of Commerce (2015)
Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32
Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_10
Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_25
Unruh, D.: Computationally binding quantum commitments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 497–527. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_18
Acknowledgments
The authors have been supported by EU H2020 Project Prismacloud, grant agreement n\(^\circ \)644962. We thank Christian Rechberger for discussions on the choice of symmetric-key primitives, especially regarding the instantiation of hash functions using LowMC, as well as for providing us with updated LowMC instances.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Derler, D., Ramacher, S., Slamanig, D. (2018). Post-Quantum Zero-Knowledge Proofs for Accumulators with Applications to Ring Signatures from Symmetric-Key Primitives. In: Lange, T., Steinwandt, R. (eds) Post-Quantum Cryptography. PQCrypto 2018. Lecture Notes in Computer Science(), vol 10786. Springer, Cham. https://doi.org/10.1007/978-3-319-79063-3_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-79063-3_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-79062-6
Online ISBN: 978-3-319-79063-3
eBook Packages: Computer ScienceComputer Science (R0)