Skip to main content

Faster Isogeny-Based Compressed Key Agreement

  • Conference paper
  • First Online:
Post-Quantum Cryptography (PQCrypto 2018)

Abstract

Supersingular isogeny-based cryptography is one of the more recent families of post-quantum proposals. An interesting feature is the comparatively low bandwidth occupation in key agreement protocols, which stems from the possibility of key compression. However, compression and decompression introduce a significant overhead to the overall processing cost despite recent progress. In this paper we address the main processing bottlenecks involved in key compression and decompression, and suggest substantial improvements for each of them. Some of our techniques may have an independent interest for other, more conventional areas of elliptic curve cryptography as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We stress, however, that here the naming is purely analogous: there is no quantum process involved in the construction.

  2. 2.

    This part closely follows the idea behind [8, Chap. 1 (Sect. 4), Theorem 4.1].

References

  1. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression for isogeny-based cryptosystems. In: Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography, pp. 1–10. ACM (2016)

    Google Scholar 

  2. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–369. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_23

    Chapter  Google Scholar 

  3. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve points indistinguishable from uniform random strings. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 967–980. ACM (2013)

    Google Scholar 

  4. Bernstein, D.J., Lange, T.: Analysis and optimization of elliptic-curve single-scalar multiplication. In: Finite Fields and Applications: Proceedings of Fq8, Number 461 in Contemporary Mathematics, pp. 1–18. American Mathematical Society, Providence (2008)

    Google Scholar 

  5. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient compression of SIDH public keys. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 679–706. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_24

    Chapter  Google Scholar 

  6. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Faz-Hernández, A., López, J., Ochoa-Jiménez, E., Rodríguez-Henríquez, F.: A faster software implementation of the supersingular isogeny Diffie-Hellman key exchange protocol. Cryptology ePrint Archive, Report 2017/1015 (2017)

    Google Scholar 

  8. Husemöller, D.: Elliptic Curves: Graduate Texts in Mathematics, vol. 111, 2nd edn. Springer, New York (2004). https://doi.org/10.1007/978-0-387-09494-6

    Google Scholar 

  9. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-319-56620-7_24

    Chapter  Google Scholar 

  10. MS SIDH team: SIDH v2.0 (2017). https://github.com/Microsoft/PQCrypto-SIDH

  11. Subramanya Rao, S.R.: Three dimensional montgomery ladder, differential point tripling on montgomery curves and point quintupling on weierstrass’ and edwards curves. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 84–106. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31517-1_5

    Chapter  Google Scholar 

  12. Schaefer, E., Stoll, M.: How to do a \(p\)-descent on an elliptic curve. Trans. Am. Math. Soc. 356(3), 1209–1231 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  14. Silverman, J.H.: The Arithmetic of Elliptic Curves: Graduate Texts in Mathematics, vol. 106, 2nd edn. Springer, New York (2009). https://doi.org/10.1007/b97292

    Book  Google Scholar 

  15. Spiegel, M.R., Liu, J.: Mathematical Handbook of Formulas and Tables. Schaum’s Outline Series, 2nd edn. McGraw-Hill, New York (1999)

    Google Scholar 

  16. Zanon, G.H.M., Simplicio Jr., M.A., Pereira, G.C.C.F., Doliskani, J., Barreto, P.S.L.M.: Faster isogeny-based compressed key agreement. Technical report, Cryptology ePrint Archive, Report 2017/1143 (2017)

    Google Scholar 

Download references

Acknowledgment

J. Doliskani and G. Pereira were supported by NSERC, CryptoWorks21, and Public Works and Government Services Canada. M. Simplicio was supported by Brazilian National Council for Scientific and Technological Development (CNPq) under grant 301198/2017-9. M. Simplicio, P. Barreto and G. Zanon were partially supported by the joint São Paulo Research Foundation (FAPESP) / Intel Research grant 2015/50520-6 “Efficient Post-Quantum Cryptography for Building Advanced Security Applications.” M. Simplicio and P. Barreto are also partially supported by the São Paulo Research Foundation (FAPESP) under grant 13/25977-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geovandro C. C. F. Pereira .

Editor information

Editors and Affiliations

A Pairing Algorithms

A Pairing Algorithms

figure h

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zanon, G.H.M., Simplicio, M.A., Pereira, G.C.C.F., Doliskani, J., Barreto, P.S.L.M. (2018). Faster Isogeny-Based Compressed Key Agreement. In: Lange, T., Steinwandt, R. (eds) Post-Quantum Cryptography. PQCrypto 2018. Lecture Notes in Computer Science(), vol 10786. Springer, Cham. https://doi.org/10.1007/978-3-319-79063-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-79063-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-79062-6

  • Online ISBN: 978-3-319-79063-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics