Skip to main content

Availability of Mineral Resources and Impact for Electric Vehicle Recycling in Europe

  • Chapter
  • First Online:
Towards a Sustainable Economy

Part of the book series: Sustainability and Innovation ((SUSTAINABILITY))

  • 2007 Accesses

Abstract

Lithium-ion battery technology is a key component of vehicle electrification and its end-of-life recovery is an important factor in lifting barriers towards increased Electromobility, such as battery cost, environmental impact, mandatory recycling rates of more than 50% battery weight (European Union) and, finally, the availability of constituent elements such as lithium and cobalt. This chapter focuses on the availability of constituent materials, in order to assess the potential for critical shortages due to a scaling up of Electromobility. To account for the complexity and long-term horizon of our study, we combine the use of System Dynamics with the Stanford Research Institute Matrix for scenario planning. We find that for lithium-ion battery needs, only cobalt is likely to see its reserves depleted. Other materials such as nickel, manganese, copper, graphite and iron are at risk of depletion due to developments unrelated to Electromobility. In all cases, we show that recycling significantly reduces the consumption of materials for lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta, C., & Idjis, H. (2014). State of the art of scenario planning: Proposal of a classification of scenario building existing methods according to use (Mémoire thématique). Ecole Centrale Paris.

    Google Scholar 

  • ADEME. (2013). Élaboration selon les principes des ACV des bilans énergétiques, des émissions de gaz à effet de serre et des autres impacts environnementaux. Induits par l’ensemble des filières de véhicules électriques et de véhicules thermiques, VP de segment B (citadine polyvalente) et VUL à l’horizon 2012 et 2020. Agence de l’Environnement et de la Maîtrise de l’Energie.

    Google Scholar 

  • EEA. (2015). Global search on data, maps and indicators – European environment agency. Accessed April 14, 2015, from http://www.eea.europa.eu/data-and-maps/find#c1=Graph&c1=Map&b_start=0&c6=transport

  • European Commission. (2009). Regulation (EC) No 443/2009 of 23 April 2009 setting emission performance standards for new passenger cars as part of the Community’s integrated approach to reduce CO2 emissions from light-duty vehicles.

    Google Scholar 

  • European Commission. (2011). White paper on transport: Towards a competitive and resource efficient transport system.

    Google Scholar 

  • European Commission. (2014a). Statistical pocketbook 2014 – Transport. European Commission.

    Google Scholar 

  • European Commission. (2014b). Regulation (EU) No 333/2014 of the European Parliament and of the Council of 11 March 2014 amending Regulation (EC) No 443/2009 to define the modalities for reaching the 2020 target to reduce CO2 emissions from new passenger cars.

    Google Scholar 

  • Grosjean, C., Miranda, P. H., Perrin, M., & Poggi, P. (2012). Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renewable and Sustainable Energy Reviews, 16, 1735–1744.

    Article  Google Scholar 

  • Gruber, P. W., Medina, P. A., Keoleian, G. A., Kesler, S. E., Everson, M. P., & Wallington, T. J. (2011). Global lithium availability. Journal of Industrial Ecology, 15, 760–775.

    Article  Google Scholar 

  • Hoyer, C., Kieckhäfer, K., & Spengler, T. S. (2014). Technology and capacity planning for the recycling of lithium-ion electric vehicle batteries in Germany. Journal of Business Economics, 85, 505–544.

    Article  Google Scholar 

  • Idjis, H. (2015). La filière de valorisation des batteries de véhicules électriques en fin de vie: Contribution à la modélisation d’un système organisationnel complexe en émergence (Phd thesis). Université Paris-Saclay, Français.

    Google Scholar 

  • Idjis, H., & Da Costa, P. (2017). Is electric vehicles battery recovery a source of cost or profit? In D. Attias (Ed.), The automobile revolution (pp. 117–134). Cham: Springer. https://doi.org/10.1007/978-3-319-45838-0_8.

    Chapter  Google Scholar 

  • IEA. (2012). Energy technology perspectives 2012: Pathways to a clean energy system. Paris: International Energy Agency.

    Book  Google Scholar 

  • Kwade, A. (2010). On the way to an “intelligent” recycling of traction batteries. Presented at the 7th Braunschweiger symposium on hybrid. Braunschweigh: Electric Vehicles and Energy Management.

    Google Scholar 

  • Miedema, J. H., & Moll, H. C. (2013). Lithium availability in the EU27 for battery-driven vehicles: The impact of recycling and substitution on the confrontation between supply and demand until 2050. Resources Policy, 38, 204–211.

    Article  Google Scholar 

  • Novinsky, P., Glöser, S., Kühn, A., & Walz, R. (2014). Modeling the feedback of battery raw material shortages on the technological development of lithium-ion-batteries and the diffusion of alternative automotive drives. In 32nd International Conference of the System Dynamics Society, Delft, Netherlands.

    Google Scholar 

  • Pasaoglu, G., Honselaar, M., & Thiel, C. (2012). Potential vehicle fleet CO2 reductions and cost implications for various vehicle technology deployment scenarios in Europe. Energy Policy, 40, 404–421.

    Article  Google Scholar 

  • Sterman, J. (2000). Business dynamics: Systems thinking and modeling for a complex world. New York: Irwin/McGraw-Hill.

    Google Scholar 

  • Swart, P., Dewulf, J., & Biernaux, A. (2014). Resource demand for the production of different cathode materials for lithium ion batteries. Journal of Cleaner Production, 84, 391–399.

    Article  Google Scholar 

  • USGS. (2010). Mineral Commodity Summaries 2010. U.S. Geological Survey.

    Google Scholar 

  • USGS. (2011). Mineral Commodity Summaries 2011. U.S. Geological Survey.

    Google Scholar 

  • USGS. (2012). Mineral Commodity Summaries 2012. U.S. Geological Survey.

    Google Scholar 

  • USGS. (2013). Mineral Commodity Summaries 2013. U.S. Geological Survey.

    Google Scholar 

  • USGS. (2014). Mineral Commodity Summaries 2014. U.S. Geological Survey.

    Google Scholar 

  • USGS. (2015). Mineral Commodity Summaries 2015. U.S. Geological Survey.

    Google Scholar 

  • Väyrynen, A., & Salminen, J. (2012). Lithium ion battery production. The Journal of Chemical Thermodynamics, Thermodynamics of Sustainable Processes, 46, 80–85.

    Article  Google Scholar 

  • WEC. (2013). Time to get real – The case for sustainable energy investment. World Energy Trilemma 2013. World Energy Council.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Attias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Idjis, H., Attias, D. (2018). Availability of Mineral Resources and Impact for Electric Vehicle Recycling in Europe. In: da Costa, P., Attias, D. (eds) Towards a Sustainable Economy . Sustainability and Innovation. Springer, Cham. https://doi.org/10.1007/978-3-319-79060-2_5

Download citation

Publish with us

Policies and ethics