Skip to main content

Individual Drugs in Rheumatology and the Risk of Infection

  • Chapter
  • First Online:
Book cover The Microbiome in Rheumatic Diseases and Infection

Abstract

The advances in the therapeutics of rheumatic patients with the introduction of biologic therapies have led to a better control of diseases with inadequate response to conventional treatments and to an improvement of the functional status of these patients. Despite this progress, the risk of infections in patients under biologic or conventional treatments has not been reduced, partly because more elderly patients or patients with comorbidities are considered eligible for immunosuppressive or disease-modifying treatments. Rheumatologists should be aware of the specific patterns of infection risk that accompany these, especially the newer, treatments and should be vigilant for signs and symptoms of infection in patients with rheumatic diseases. Appropriate screening for and treatment of chronic hepatitis B virus infection and latent tuberculosis significantly reduce the risk for reactivation in patients under therapy. Chemoprophylaxis of patients susceptible for Pneumocystis jirovecii pneumonia eliminates almost completely the risk for acquisition of this potentially lethal infection in eligible patients. Appropriate vaccinations of rheumatic patients treated with antirheumatic therapies should be part of the daily clinical practice of physicians caring for patients with rheumatic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAV:

ANCA-associated vasculitis

ABA:

Abatacept

ADA:

Adalimumab

ANA:

Anakinra

ANCA:

Antineutrophil cytoplasmic antibody

Anti-HBc:

Antibody against hepatitis B core antigen

Anti-HBs:

Antibody against hepatitis B surface antigen

AOSD:

Adult-onset Still’s disease

AS:

Ankylosing spondylitis

AZA:

Azathioprine

BAFF:

B-cell activating factor

BCG:

Bacillus Calmette-Guérin

bDMARDs:

Biologic disease-modifying antirheumatic drugs

CAPS:

Cryopyrin-associated periodic syndromes

CD:

Cluster of differentiation

CNS:

Central nervous system

CRP:

C-reactive protein

CsA:

Cyclosporine A

csDMARDs:

Conventional synthetic disease-modifying antirheumatic drugs

CYC:

Cyclophosphamide

EDTA:

European Dialysis and Transplantation Association

EMA:

European Medicines Agency

ETN:

Etanercept

EULAR:

European League Against Rheumatism

FDA:

Food and Drug Administration

GCA:

Giant-cell arteritis

HBsAg:

Hepatitis B surface antigen

HBV:

Hepatitis B virus

HZ:

Herpes zoster

Ig:

Immunoglobulin

IGRA:

Interferon-gamma releasing assay

IL:

Interleukin

INFL:

Infliximab

IV:

Intravenous

IVIG:

Intravenous immunoglobulin

JAK:

Janus kinase

JIA:

Juvenile idiopathic arthritis

LEF:

Leflunomide

LN:

Lupus nephritis

LON:

Late-onset neutropenia

LTBI:

Latent tuberculosis infection

LTE:

Long-term extension

MMF:

Mycophenolate mofetil

MTX:

Methotrexate

NSAIDs:

Nonsteroidal anti-inflammatory drugs

NTM:

Nontuberculous mycobacteria

OIs:

Opportunistic infections

PDE4:

Phosphodiesterase-4

PJP:

Pneumocystis jirovecii pneumonia

PML:

Progressive multifocal leukoencephalopathy

PMR:

Polymyalgia rheumatica

PsA:

Psoriatic arthritis

RA:

Rheumatoid arthritis

RCT:

Randomized controlled trial

RTX:

Rituximab

SC:

Subcutaneous

SLE:

Systemic lupus erythematosus

TB:

Tuberculosis

TCZ:

Tocilizumab

TMP/SMX:

Trimethoprim/sulfamethoxazole

TNF:

Tumor necrosis factor

TNFi:

TNF inhibitors

TST:

Tuberculin skin test

VZV:

Varicella-zoster virus

References

  1. Olofsson T, Petersson IF, Eriksson JK, et al. Predictors of work disability after start of anti-TNF therapy in a national cohort of Swedish patients with rheumatoid arthritis: does early anti-TNF therapy bring patients back to work? Ann Rheum Dis. 2017;76(7):1245–52.

    Article  PubMed  CAS  Google Scholar 

  2. Mikuls TR, Saag KG, Criswell LA, et al. Mortality risk associated with rheumatoid arthritis in a prospective cohort of older women: results from the Iowa women’s health study. Ann Rheum Dis. 2002;61:994–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Weaver A, Troum O, Hooper M, et al. Rheumatoid arthritis disease activity and disability affect the risk of serious infection events in RADIUS 1. J Rheumatol. 2013;40:1275–81.

    Article  PubMed  Google Scholar 

  4. Tektonidou MG, Wang Z, Dasgupta A, et al. Burden of serious infections in adults with systemic lupus erythematosus: a national population-based study, 1996–2011. Arthritis Care Res (Hoboken). 2015;67:1078–85.

    Article  Google Scholar 

  5. Rua-Figueroa I, Lopez-Longo J, Galindo-Izquierdo M, et al. Incidence, associated factors and clinical impact of severe infections in a large, multicentric cohort of patients with systemic lupus erythematosus. Semin Arthritis Rheum. 2017;47(1):38–45.

    Article  PubMed  Google Scholar 

  6. Flossmann O, Berden A, de Groot K, et al. Long-term patient survival in ANCA-associated vasculitis. Ann Rheum Dis. 2011;70:488–94.

    Article  PubMed  Google Scholar 

  7. Doran MF, Crowson CS, Pond GR, et al. Frequency of infection in patients with rheumatoid arthritis compared with controls: a population-based study. Arthritis Rheum. 2002;46:2287–93.

    Article  PubMed  Google Scholar 

  8. Dougados M, Soubrier M, Antunez A, et al. Prevalence of comorbidities in rheumatoid arthritis and evaluation of their monitoring: results of an international, cross-sectional study (COMORA). Ann Rheum Dis. 2014;73:62–8.

    Article  PubMed  Google Scholar 

  9. Labarca C, Koster MJ, Crowson CS, et al. Predictors of relapse and treatment outcomes in biopsy-proven giant cell arteritis: a retrospective cohort study. Rheumatology (Oxford). 2016;55:347–56.

    Article  Google Scholar 

  10. Youssef J, Novosad SA, Winthrop KL. Infection risk and safety of corticosteroid use. Rheum Dis Clin North Am. 2016;42:157.

    Article  PubMed  Google Scholar 

  11. Fardet L, Petersen I, Nazareth I. Common infections in patients prescribed systemic glucocorticoids in primary care: a population-based cohort study. PLoS Med. 2016;13:e1002024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Dixon WG, Kezouh A, Bernatsky S, et al. The influence of systemic glucocorticoid therapy upon the risk of non-serious infection in older patients with rheumatoid arthritis: a nested case-control study. Ann Rheum Dis. 2011;70:956–60.

    Article  PubMed  CAS  Google Scholar 

  13. Grijalva CG, Chen L, Delzell E, et al. Initiation of tumor necrosis factor-alpha antagonists and the risk of hospitalization for infection in patients with autoimmune diseases. JAMA. 2011;306:2331–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Smitten AL, Choi HK, Hochberg MC, et al. The risk of hospitalized infection in patients with rheumatoid arthritis. J Rheumatol. 2008;35:387–93.

    PubMed  Google Scholar 

  15. Wolfe F, Caplan L, Michaud K. Treatment for rheumatoid arthritis and the risk of hospitalization for pneumonia: associations with prednisone, disease-modifying antirheumatic drugs, and anti-tumor necrosis factor therapy. Arthritis Rheum. 2006;54:628–34.

    Article  PubMed  CAS  Google Scholar 

  16. Dixon WG, Abrahamowicz M, Beauchamp ME, et al. Immediate and delayed impact of oral glucocorticoid therapy on risk of serious infection in older patients with rheumatoid arthritis: a nested case-control analysis. Ann Rheum Dis. 2012;71:1128–33.

    Article  PubMed  CAS  Google Scholar 

  17. Strangfeld A, Eveslage M, Schneider M, et al. Treatment benefit or survival of the fittest: what drives the time-dependent decrease in serious infection rates under TNF inhibition and what does this imply for the individual patient? Ann Rheum Dis. 2011;70:1914–20.

    Article  PubMed  CAS  Google Scholar 

  18. Ruiz-Irastorza G, Olivares N, Ruiz-Arruza I, et al. Predictors of major infections in systemic lupus erythematosus. Arthritis Res Ther. 2009;11:R109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Bosch X, Guilabert A, Pallares L, et al. Infections in systemic lupus erythematosus: a prospective and controlled study of 110 patients. Lupus. 2006;15(9):584.

    Article  PubMed  CAS  Google Scholar 

  20. Pagnoux C, Quemeneur T, Ninet J, et al. Treatment of systemic necrotizing vasculitides in patients aged sixty-five years or older: results of a multicenter, open-label, randomized controlled trial of corticosteroid and cyclophosphamide-based induction therapy. Arthritis Rheumatol. 2015;67:1117–27.

    Article  PubMed  CAS  Google Scholar 

  21. Petri H, Nevitt A, Sarsour K, et al. Incidence of giant cell arteritis and characteristics of patients: data-driven analysis of comorbidities. Arthritis Care Res (Hoboken). 2015;67:390–5.

    Article  CAS  Google Scholar 

  22. Schmidt J, Smail A, Roche B, et al. Incidence of severe infections and infection-related mortality during the course of giant cell arteritis: a multicenter, prospective, double-cohort study. Arthritis Rheumatol. 2016;68:1477–82.

    Article  PubMed  CAS  Google Scholar 

  23. Koutsianas C, Thomas K, Vassilopoulos D. Hepatitis B reactivation in rheumatic diseases: screening and prevention. Rheum Dis Clin North Am. 2017;43:133–49.

    Article  PubMed  Google Scholar 

  24. Smitten AL, Choi HK, Hochberg MC, et al. The risk of herpes zoster in patients with rheumatoid arthritis in the United States and the United Kingdom. Arthritis Rheum. 2007;57(8):1431.

    Article  PubMed  Google Scholar 

  25. Dooley MA, Jayne D, Ginzler EM, et al. Mycophenolate versus azathioprine as maintenance therapy for lupus nephritis. N Engl J Med. 2011;365:1886–95.

    Article  PubMed  CAS  Google Scholar 

  26. Strand V, Ahadieh S, French J, et al. Systematic review and meta-analysis of serious infections with tofacitinib and biologic disease-modifying antirheumatic drug treatment in rheumatoid arthritis clinical trials. Arthritis Res Ther. 2015;17:362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Galloway JB, Hyrich KL, Mercer LK, et al. Anti-TNF therapy is associated with an increased risk of serious infections in patients with rheumatoid arthritis especially in the first 6 months of treatment: updated results from the British Society for Rheumatology biologics register with special emphasis on risks in the elderly. Rheumatology (Oxford). 2011;50:124–31.

    Article  CAS  Google Scholar 

  28. van Dartel SA, Fransen J, Kievit W, et al. Difference in the risk of serious infections in patients with rheumatoid arthritis treated with adalimumab, infliximab and etanercept: results from the Dutch rheumatoid arthritis monitoring (DREAM) registry. Ann Rheum Dis. 2013;72:895–900.

    Article  PubMed  CAS  Google Scholar 

  29. Dixon WG, Watson K, Lunt M, et al. Rates of serious infection, including site-specific and bacterial intracellular infection, in rheumatoid arthritis patients receiving anti-tumor necrosis factor therapy: results from the British Society for Rheumatology biologics register. Arthritis Rheum. 2006;54:2368–76.

    Article  PubMed  CAS  Google Scholar 

  30. Singh JA, Cameron C, Noorbaloochi S, et al. Risk of serious infection in biological treatment of patients with rheumatoid arthritis: a systematic review and meta-analysis. Lancet. 2015;386:258–65.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kavanaugh A, McInnes IB, Mease P, et al. Clinical efficacy, radiographic and safety findings through 5 years of subcutaneous golimumab treatment in patients with active psoriatic arthritis: results from a long-term extension of a randomised, placebo-controlled trial (the GO-REVEAL study). Ann Rheum Dis. 2014;73:1689–94.

    Article  PubMed  CAS  Google Scholar 

  32. Gottlieb AB, Gordon K, Giannini EH, et al. Clinical trial safety and mortality analyses in patients receiving etanercept across approved indications. J Drugs Dermatol. 2011;10:289–300.

    PubMed  Google Scholar 

  33. Burmester GR, Panaccione R, Gordon KB, et al. Adalimumab: long-term safety in 23 458 patients from global clinical trials in rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis and Crohn’s disease. Ann Rheum Dis. 2013;72:517–24.

    Article  PubMed  CAS  Google Scholar 

  34. Kristensen LE, Gulfe A, Saxne T, et al. Efficacy and tolerability of anti-tumour necrosis factor therapy in psoriatic arthritis patients: results from the South Swedish arthritis treatment group register. Ann Rheum Dis. 2008;67:364–9.

    Article  PubMed  CAS  Google Scholar 

  35. Saad AA, Ashcroft DM, Watson KD, et al. Efficacy and safety of anti-TNF therapies in psoriatic arthritis: an observational study from the British Society for Rheumatology biologics register. Rheumatology (Oxford). 2010;49:697–705.

    Article  CAS  Google Scholar 

  36. van der Heijde D, Zack D, Wajdula J, et al. Rates of serious infections, opportunistic infections, inflammatory bowel disease, and malignancies in subjects receiving etanercept vs. controls from clinical trials in ankylosing spondylitis: a pooled analysis. Scand J Rheumatol. 2014;43:49–53.

    Article  PubMed  Google Scholar 

  37. Deodhar A, Braun J, Inman RD, et al. Golimumab administered subcutaneously every 4 weeks in ankylosing spondylitis: 5-year results of the GO-RAISE study. Ann Rheum Dis. 2015;74:757–61.

    Article  PubMed  CAS  Google Scholar 

  38. Wallis D, Thavaneswaran A, Haroon N, et al. Tumour necrosis factor inhibitor therapy and infection risk in axial spondyloarthritis: results from a longitudinal observational cohort. Rheumatology (Oxford). 2015;54:152–6.

    Article  CAS  Google Scholar 

  39. van Vollenhoven RF, Emery P, Bingham CO III, et al. Long-term safety of rituximab in rheumatoid arthritis: 9.5-year follow-up of the global clinical trial programme with a focus on adverse events of interest in RA patients. Ann Rheum Dis. 2013;72:1496–502.

    Article  PubMed  CAS  Google Scholar 

  40. Curtis JR, Yang S, Patkar NM, et al. Risk of hospitalized bacterial infections associated with biologic treatment among US veterans with rheumatoid arthritis. Arthritis Care Res (Hoboken). 2014;66:990–7.

    Article  CAS  Google Scholar 

  41. Vassilopoulos D, Delicha EM, Settas L, et al. Safety profile of repeated rituximab cycles in unselected rheumatoid arthritis patients: a long-term, prospective real-life study. Clin Exp Rheumatol. 2016;34:893–900.

    PubMed  Google Scholar 

  42. Johnston SS, Turpcu A, Shi N, et al. Risk of infections in rheumatoid arthritis patients switching from anti-TNF agents to rituximab, abatacept, or another anti-TNF agent, a retrospective administrative claims analysis. Semin Arthritis Rheum. 2013;43:39–47.

    Article  PubMed  CAS  Google Scholar 

  43. Jones RB, Tervaert JW, Hauser T, et al. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N Engl J Med. 2010;363:211–20.

    Article  PubMed  CAS  Google Scholar 

  44. McGregor JG, Hogan SL, Kotzen ES, et al. Rituximab as an immunosuppressant in antineutrophil cytoplasmic antibody-associated vasculitis. Nephrol Dial Transplant. 2015;30(Suppl 1):i123–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Pendergraft WF III, Cortazar FB, Wenger J, et al. Long-term maintenance therapy using rituximab-induced continuous B-cell depletion in patients with ANCA vasculitis. Clin J Am Soc Nephrol. 2014;9:736–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Alberici F, Smith RM, Jones RB, et al. Long-term follow-up of patients who received repeat-dose rituximab as maintenance therapy for ANCA-associated vasculitis. Rheumatology (Oxford). 2015;54:1153–60.

    Article  CAS  Google Scholar 

  47. Rovin BH, Furie R, Latinis K, et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the lupus nephritis assessment with rituximab study. Arthritis Rheum. 2012;64:1215–26.

    Article  PubMed  CAS  Google Scholar 

  48. Witt M, Grunke M, Proft F, et al. Clinical outcomes and safety of rituximab treatment for patients with systemic lupus erythematosus (SLE)–results from a nationwide cohort in Germany (GRAID). Lupus. 2013;22:1142–9.

    Article  PubMed  CAS  Google Scholar 

  49. Mease PJ, McInnes IB, Kirkham B, et al. Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis. N Engl J Med. 2015;373:1329–39.

    Article  PubMed  CAS  Google Scholar 

  50. McInnes IB, Mease PJ, Kirkham B, et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;386:1137–46.

    Article  PubMed  CAS  Google Scholar 

  51. Baeten D, Sieper J, Braun J, et al. Secukinumab, an interleukin-17A inhibitor, in ankylosing spondylitis. N Engl J Med. 2015;373:2534–48.

    Article  PubMed  CAS  Google Scholar 

  52. Yamamoto K, Goto H, Hirao K, et al. Longterm safety of tocilizumab: results from 3 years of followup postmarketing surveillance of 5573 patients with rheumatoid arthritis in Japan. J Rheumatol. 2015;42:1368–75.

    Article  PubMed  CAS  Google Scholar 

  53. Sakai R, Cho SK, Nanki T, et al. Head-to-head comparison of the safety of tocilizumab and tumor necrosis factor inhibitors in rheumatoid arthritis patients (RA) in clinical practice: results from the registry of Japanese RA patients on biologics for long-term safety (REAL) registry. Arthritis Res Ther. 2015;17:74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Salmon JH, Gottenberg JE, Ravaud P, et al. Predictive risk factors of serious infections in patients with rheumatoid arthritis treated with abatacept in common practice: results from the Orencia and rheumatoid arthritis (ORA) registry. Ann Rheum Dis. 2016;75:1108–13.

    Article  PubMed  CAS  Google Scholar 

  55. Fleischmann RM, Tesser J, Schiff MH, et al. Safety of extended treatment with anakinra in patients with rheumatoid arthritis. Ann Rheum Dis. 2006;65:1006–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Galloway JB, Hyrich KL, Mercer LK, et al. The risk of serious infections in patients receiving anakinra for rheumatoid arthritis: results from the British Society for Rheumatology biologics register. Rheumatology (Oxford). 2011;50:1341–2.

    Article  Google Scholar 

  57. Manzi S, Sanchez-Guerrero J, Merrill JT, et al. Effects of belimumab, a B lymphocyte stimulator-specific inhibitor, on disease activity across multiple organ domains in patients with systemic lupus erythematosus: combined results from two phase III trials. Ann Rheum Dis. 2012;71:1833–8.

    Article  PubMed  CAS  Google Scholar 

  58. Merrill JT, Ginzler EM, Wallace DJ, et al. Long-term safety profile of belimumab plus standard therapy in patients with systemic lupus erythematosus. Arthritis Rheum. 2012;64:3364–73.

    Article  PubMed  CAS  Google Scholar 

  59. McInnes IB, Kavanaugh A, Gottlieb AB, et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet. 2013;382:780–9.

    Article  PubMed  CAS  Google Scholar 

  60. Ritchlin C, Rahman P, Kavanaugh A, et al. Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial. Ann Rheum Dis. 2014;73:990–9.

    Article  PubMed  CAS  Google Scholar 

  61. Ritchlin CT, Gottlieb AB, Menter A, Mease PJ, Kalia S, Kerdel F, et al. Serious infections in psoriasis patients with psoriatic arthritis in the psoriasis longitudinal assessment and registry study. Arthritis Rheumatol. 2015;67(suppl 10):2084–5.

    Google Scholar 

  62. Kavanaugh AF, Geier J, Bingham CO III, Chen C, Reed GW, Saunders KC, et al. Real world results from a post-approval safety surveillance of tofacitinib (Xeljanz): over 3 year results from an ongoing US-based rheumatoid arthritis registry. Arthritis Rheumatol. 2016;68(suppl 10):2595.

    Google Scholar 

  63. Greenberg JD, Reed G, Kremer JM, et al. Association of methotrexate and tumour necrosis factor antagonists with risk of infectious outcomes including opportunistic infections in the CORRONA registry. Ann Rheum Dis. 2010;69:380–6.

    Article  PubMed  CAS  Google Scholar 

  64. Richter A, Listing J, Schneider M, et al. Impact of treatment with biologic DMARDs on the risk of sepsis or mortality after serious infection in patients with rheumatoid arthritis. Ann Rheum Dis. 2016;75:1667–73.

    Article  PubMed  CAS  Google Scholar 

  65. Beutler B, Milsark IW, Cerami AC. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science. 1985;229:869–71.

    Article  PubMed  CAS  Google Scholar 

  66. Lanternier F, Tubach F, Ravaud P, et al. Incidence and risk factors of Legionella pneumophila pneumonia during anti-tumor necrosis factor therapy: a prospective French study. Chest. 2013;144:990–8.

    Article  PubMed  Google Scholar 

  67. Slifman NR, Gershon SK, Lee JH, et al. Listeria monocytogenes infection as a complication of treatment with tumor necrosis factor alpha-neutralizing agents. Arthritis Rheum. 2003;48:319–24.

    Article  PubMed  CAS  Google Scholar 

  68. Winthrop KL, Iseman M. Bedfellows: mycobacteria and rheumatoid arthritis in the era of biologic therapy. Nat Rev Rheumatol. 2013;9:524–31.

    Article  PubMed  Google Scholar 

  69. Tubach F, Salmon D, Ravaud P, et al. Risk of tuberculosis is higher with anti-tumor necrosis factor monoclonal antibody therapy than with soluble tumor necrosis factor receptor therapy: the three-year prospective French research axed on tolerance of biotherapies registry. Arthritis Rheum. 2009;60:1884–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Carmona L, Gomez-Reino JJ, Rodriguez-Valverde V, et al. Effectiveness of recommendations to prevent reactivation of latent tuberculosis infection in patients treated with tumor necrosis factor antagonists. Arthritis Rheum. 2005;52:1766–72.

    Article  PubMed  CAS  Google Scholar 

  71. Wong SH, Gao Q, Tsoi KK, et al. Effect of immunosuppressive therapy on interferon gamma release assay for latent tuberculosis screening in patients with autoimmune diseases: a systematic review and meta-analysis. Thorax. 2016;71:64–72.

    Article  PubMed  Google Scholar 

  72. Singh JA, Saag KG, Bridges SL Jr, et al. 2015 American college of rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol. 2016;68:1–26.

    PubMed  Google Scholar 

  73. Kleinert S, Tony HP, Krueger K, et al. Screening for latent tuberculosis infection: performance of tuberculin skin test and interferon-gamma release assays under real-life conditions. Ann Rheum Dis. 2012;71:1791–5.

    Article  PubMed  CAS  Google Scholar 

  74. Winthrop KL, Weinblatt ME, Daley CL. You can’t always get what you want, but if you try sometimes (with two tests–TST and IGRA–for tuberculosis) you get what you need. Ann Rheum Dis. 2012;71:1757–60.

    Article  PubMed  Google Scholar 

  75. Winthrop KL, Baxter R, Liu L, et al. Mycobacterial diseases and antitumour necrosis factor therapy in USA. Ann Rheum Dis. 2013;72:37–42.

    Article  PubMed  CAS  Google Scholar 

  76. Perez-Alvarez R, Diaz-Lagares C, Garcia-Hernandez F, et al. Hepatitis B virus (HBV) reactivation in patients receiving tumor necrosis factor (TNF)-targeted therapy: analysis of 257 cases. Medicine (Baltimore). 2011;90:359–71.

    Article  CAS  Google Scholar 

  77. Lan JL, Chen YM, Hsieh TY, et al. Kinetics of viral loads and risk of hepatitis B virus reactivation in hepatitis B core antibody-positive rheumatoid arthritis patients undergoing anti-tumour necrosis factor alpha therapy. Ann Rheum Dis. 2011;70:1719–25.

    Article  PubMed  CAS  Google Scholar 

  78. Ryu HH, Lee EY, Shin K, et al. Hepatitis B virus reactivation in rheumatoid arthritis and ankylosing spondylitis patients treated with anti-TNFalpha agents: a retrospective analysis of 49 cases. Clin Rheumatol. 2012;31(6):931.

    Article  PubMed  Google Scholar 

  79. Ye H, Zhang XW, Mu R, et al. Anti-TNF therapy in patients with HBV infection–analysis of 87 patients with inflammatory arthritis. Clin Rheumatol. 2014;33:119–23.

    Article  PubMed  Google Scholar 

  80. Lee YH, Bae SC, Song GG. Hepatitis B virus (HBV) reactivation in rheumatic patients with hepatitis core antigen (HBV occult carriers) undergoing anti-tumor necrosis factor therapy. Clin Exp Rheumatol. 2013;31:118–21.

    PubMed  Google Scholar 

  81. Fukuda W, Hanyu T, Katayama M, et al. Incidence of hepatitis B virus reactivation in patients with resolved infection on immunosuppressive therapy for rheumatic disease: a multicentre, prospective, observational study in Japan. Ann Rheum Dis. 2017;76(6):1051.

    Article  PubMed  Google Scholar 

  82. Reddy KR, Beavers KL, Hammond SP, et al. American gastroenterological association institute guideline on the prevention and treatment of hepatitis B virus reactivation during immunosuppressive drug therapy. Gastroenterology. 2015;148:215–9.

    Article  PubMed  CAS  Google Scholar 

  83. Vassilopoulos D, Apostolopoulou A, Hadziyannis E, et al. Long-term safety of anti-TNF treatment in patients with rheumatic diseases and chronic or resolved hepatitis B virus infection. Ann Rheum Dis. 2010;69:1352–5.

    Article  PubMed  CAS  Google Scholar 

  84. Winthrop KL, Baddley JW, Chen L, et al. Association between the initiation of anti-tumor necrosis factor therapy and the risk of herpes zoster. JAMA. 2013;309:887–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Galloway JB, Mercer LK, Moseley A, et al. Risk of skin and soft tissue infections (including shingles) in patients exposed to anti-tumour necrosis factor therapy: results from the British Society for Rheumatology biologics register. Ann Rheum Dis. 2013;72:229–34.

    Article  PubMed  CAS  Google Scholar 

  86. Curtis JR, Xie F, Yun H, et al. Real-world comparative risks of herpes virus infections in tofacitinib and biologic-treated patients with rheumatoid arthritis. Ann Rheum Dis. 2016;75:1843–7.

    Article  PubMed  CAS  Google Scholar 

  87. Yun H, Xie F, Delzell E, et al. Risks of herpes zoster in patients with rheumatoid arthritis according to biologic disease-modifying therapy. Arthritis Care Res (Hoboken). 2015;67:731–6.

    Article  CAS  Google Scholar 

  88. Stone JH, Merkel PA, Spiera R, et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med. 2010;363:221–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Guillevin L, Pagnoux C, Karras A, et al. Rituximab versus azathioprine for maintenance in ANCA-associated vasculitis. N Engl J Med. 2014;371:1771–80.

    Article  PubMed  CAS  Google Scholar 

  90. Salmon JH, Cacoub P, Combe B, et al. Late-onset neutropenia after treatment with rituximab for rheumatoid arthritis and other autoimmune diseases: data from the AutoImmunity and rituximab registry. RMD Open. 2015;1:e000034.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Tesfa D, Ajeganova S, Hagglund H, et al. Late-onset neutropenia following rituximab therapy in rheumatic diseases: association with B lymphocyte depletion and infections. Arthritis Rheum. 2011;63:2209–14.

    Article  PubMed  CAS  Google Scholar 

  92. Abdulkader R, Dharmapalaiah C, Rose G, et al. Late-onset neutropenia in patients with rheumatoid arthritis after treatment with rituximab. J Rheumatol. 2014;41:858–61.

    Article  PubMed  CAS  Google Scholar 

  93. Knight A, Sundstrom Y, Borjesson O, et al. Late-onset neutropenia after rituximab in ANCA-associated vasculitis. Scand J Rheumatol. 2016;45:404–7.

    Article  PubMed  CAS  Google Scholar 

  94. Besada E, Koldingsnes W, Nossent JC. Serum immunoglobulin levels and risk factors for hypogammaglobulinaemia during long-term maintenance therapy with rituximab in patients with granulomatosis with polyangiitis. Rheumatology (Oxford). 2014;53:1818–24.

    Article  CAS  Google Scholar 

  95. Roberts DM, Jones RB, Smith RM, et al. Rituximab-associated hypogammaglobulinemia: incidence, predictors and outcomes in patients with multi-system autoimmune disease. J Autoimmun. 2015;57:60–5.

    Article  PubMed  CAS  Google Scholar 

  96. Venhoff N, Niessen L, Kreuzaler M, et al. Reconstitution of the peripheral B lymphocyte compartment in patients with ANCA-associated vasculitides treated with rituximab for relapsing or refractory disease. Autoimmunity. 2014;47:401–8.

    Article  PubMed  CAS  Google Scholar 

  97. Besada E. Risk factors and adverse events poorly predict infections and hypogammaglobulinemia in granulomatosis with polyangiitis patients receiving rituximab. Autoimmune Dis. 2016;2016:8095695.

    PubMed  PubMed Central  Google Scholar 

  98. Reddy V, Martinez L, Isenberg DA, et al. Pragmatic treatment of patients with systemic lupus erythematosus with rituximab: long-term effects on serum immunoglobulins. Arthritis Care Res (Hoboken). 2016;69(6):857–66.

    Article  CAS  Google Scholar 

  99. Mitroulis I, Hatzara C, Kandili A, et al. Long-term safety of rituximab in patients with rheumatic diseases and chronic or resolved hepatitis B virus infection. Ann Rheum Dis. 2013;72:308–10.

    Article  PubMed  CAS  Google Scholar 

  100. Varisco V, Vigano M, Batticciotto A, et al. Low risk of hepatitis B virus reactivation in HBsAg-negative/anti-HBc-positive carriers receiving rituximab for rheumatoid arthritis: a retrospective multicenter Italian study. J Rheumatol. 2016;43:869–74.

    Article  PubMed  CAS  Google Scholar 

  101. Molloy ES, Calabrese CM, Calabrese LH. The risk of progressive multifocal leukoencephalopathy in the biologic era: prevention and management. Rheum Dis Clin North Am. 2017;43:95–109.

    Article  PubMed  Google Scholar 

  102. Clifford DB, Ances B, Costello C, et al. Rituximab-associated progressive multifocal leukoencephalopathy in rheumatoid arthritis. Arch Neurol. 2011;68:1156–64.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Besada E, Nossent JC. Should Pneumocystis jiroveci prophylaxis be recommended with rituximab treatment in ANCA-associated vasculitis? Clin Rheumatol. 2013;32:1677–81.

    Article  PubMed  Google Scholar 

  104. Kronbichler A, Jayne DR, Mayer G. Frequency, risk factors and prophylaxis of infection in ANCA-associated vasculitis. Eur J Clin Invest. 2015;45:346–68.

    Article  PubMed  CAS  Google Scholar 

  105. Weinblatt ME, Moreland LW, Westhovens R, et al. Safety of abatacept administered intravenously in treatment of rheumatoid arthritis: integrated analyses of up to 8 years of treatment from the abatacept clinical trial program. J Rheumatol. 2013;40:787–97.

    Article  PubMed  CAS  Google Scholar 

  106. Alten R, Kaine J, Keystone E, et al. Long-term safety of subcutaneous abatacept in rheumatoid arthritis: integrated analysis of clinical trial data representing more than four years of treatment. Arthritis Rheumatol. 2014;66:1987–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Bigbee CL, Gonchoroff DG, Vratsanos G, et al. Abatacept treatment does not exacerbate chronic Mycobacterium tuberculosis infection in mice. Arthritis Rheum. 2007;56:2557–65.

    Article  PubMed  CAS  Google Scholar 

  108. Zink A, Manger B, Kaufmann J, et al. Evaluation of the RABBIT risk score for serious infections. Ann Rheum Dis. 2014;73:1673–6.

    Article  PubMed  CAS  Google Scholar 

  109. Moots RJ, Sebba A, Rigby W, et al. Effect of tocilizumab on neutrophils in adult patients with rheumatoid arthritis: pooled analysis of data from phase 3 and 4 clinical trials. Rheumatology (Oxford). 2017;56:541–9.

    Article  Google Scholar 

  110. Strangfeld A, Richter A, Siegmund B, et al. Risk for lower intestinal perforations in patients with rheumatoid arthritis treated with tocilizumab in comparison to treatment with other biologic or conventional synthetic DMARDs. Ann Rheum Dis. 2017;76:504–10.

    Article  PubMed  CAS  Google Scholar 

  111. Lang VR, Englbrecht M, Rech J, et al. Risk of infections in rheumatoid arthritis patients treated with tocilizumab. Rheumatology (Oxford). 2012;51:852–7.

    Article  CAS  Google Scholar 

  112. Loricera J, Blanco R, Hernandez JL, et al. Tocilizumab in giant cell arteritis: multicenter open-label study of 22 patients. Semin Arthritis Rheum. 2015;44:717–23.

    Article  PubMed  CAS  Google Scholar 

  113. Regent A, Redeker S, Deroux A, et al. Tocilizumab in giant cell arteritis: a multicenter retrospective study of 34 patients. J Rheumatol. 2016;43:1547–52.

    Article  PubMed  Google Scholar 

  114. Villiger PM, Adler S, Kuchen S, et al. Tocilizumab for induction and maintenance of remission in giant cell arteritis: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet. 2016;387:1921–7.

    Article  PubMed  CAS  Google Scholar 

  115. Stone JH, Tuckwell K, Dimonaco S, et al. Trial of tocilizumab in giant-cell arteritis. N Engl J Med. 2017;377:317–28.

    Article  PubMed  CAS  Google Scholar 

  116. Beukelman T, Xie F, Baddley JW, et al. The risk of hospitalized infection following initiation of biologic agents versus methotrexate in the treatment of juvenile idiopathic arthritis. Arthritis Res Ther. 2016;18:210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Salliot C, Dougados M, Gossec L. Risk of serious infections during rituximab, abatacept and anakinra treatments for rheumatoid arthritis: meta-analyses of randomised placebo-controlled trials. Ann Rheum Dis. 2009;68:25–32.

    Article  PubMed  CAS  Google Scholar 

  118. Orrock JE, Ilowite NT. Canakinumab for the treatment of active systemic juvenile idiopathic arthritis. Expert Rev Clin Pharmacol. 2016;9:1015–24.

    Article  PubMed  CAS  Google Scholar 

  119. Ruperto N, Brunner HI, Quartier P, et al. Two randomized trials of canakinumab in systemic juvenile idiopathic arthritis. N Engl J Med. 2012;367:2396–406.

    Article  PubMed  CAS  Google Scholar 

  120. Fanouriakis A, Boumpas DT, Bertsias GK. Balancing efficacy and toxicity of novel therapies in systemic lupus erythematosus. Expert Rev Clin Pharmacol. 2011;4:437–51.

    Article  PubMed  CAS  Google Scholar 

  121. Navarra SV, Guzman RM, Gallacher AE, et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet. 2011;377:721–31.

    Article  PubMed  CAS  Google Scholar 

  122. Furie R, Petri M, Zamani O, et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 2011;63:3918–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Kalb RE, Fiorentino DF, Lebwohl MG, et al. Risk of serious infection with biologic and systemic treatment of psoriasis: results from the Psoriasis Longitudinal Assessment and Registry (PSOLAR). JAMA Dermatol. 2015;151(9):961.

    Article  PubMed  Google Scholar 

  124. Almirall M, Rodriguez J, Mateo L, et al. Treatment with ustekinumab in a Spanish cohort of patients with psoriasis and psoriatic arthritis in daily clinical practice. Clin Rheumatol. 2017;36:439–43.

    Article  PubMed  Google Scholar 

  125. Chiu HY, Chen CH, Wu MS, et al. The safety profile of ustekinumab in the treatment of patients with psoriasis and concurrent hepatitis B or C. Br J Dermatol. 2013;169:1295–303.

    Article  PubMed  CAS  Google Scholar 

  126. van de Kerkhof PC, Griffiths CE, Reich K, et al. Secukinumab long-term safety experience: a pooled analysis of 10 phase II and III clinical studies in patients with moderate to severe plaque psoriasis. J Am Acad Dermatol. 2016;75:83–98.

    Article  PubMed  CAS  Google Scholar 

  127. Romani L. Immunity to fungal infections. Nat Rev Immunol. 2011;11:275–88.

    Article  PubMed  CAS  Google Scholar 

  128. Mease PJ, van der Heijde D, Ritchlin CT, et al. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann Rheum Dis. 2017;76:79–87.

    Article  PubMed  CAS  Google Scholar 

  129. Gordon KB, Blauvelt A, Papp KA, et al. Phase 3 trials of ixekizumab in moderate-to-severe plaque psoriasis. N Engl J Med. 2016;375:345–56.

    Article  PubMed  CAS  Google Scholar 

  130. Winthrop KL. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat Rev Rheumatol. 2017;13:234–43.

    Article  PubMed  CAS  Google Scholar 

  131. Cohen S, Radominski SC, Gomez-Reino JJ, et al. Analysis of infections and all-cause mortality in phase II, phase III, and long-term extension studies of tofacitinib in patients with rheumatoid arthritis. Arthritis Rheumatol. 2014;66:2924–37.

    Article  PubMed  CAS  Google Scholar 

  132. Winthrop KL, Yamanaka H, Valdez H, et al. Herpes zoster and tofacitinib therapy in patients with rheumatoid arthritis. Arthritis Rheumatol. 2014;66:2675–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Winthrop KL, Park SH, Gul A, et al. Tuberculosis and other opportunistic infections in tofacitinib-treated patients with rheumatoid arthritis. Ann Rheum Dis. 2016;75:1133–8.

    Article  PubMed  CAS  Google Scholar 

  134. Sokka T, Abelson B, Pincus T. Mortality in rheumatoid arthritis: 2008 update. Clin Exp Rheumatol. 2008;26:S35–61.

    PubMed  CAS  Google Scholar 

  135. van den Hoek J, Boshuizen HC, Roorda LD, et al. Mortality in patients with rheumatoid arthritis: a 15-year prospective cohort study. Rheumatol Int. 2017;37:487–93.

    Article  PubMed  Google Scholar 

  136. Hmamouchi I, Winthrop K, Launay O, et al. Low rate of influenza and pneumococcal vaccine coverage in rheumatoid arthritis: data from the international COMORA cohort. Vaccine. 2015;33:1446–52.

    Article  PubMed  Google Scholar 

  137. Fomin I, Caspi D, Levy V, et al. Vaccination against influenza in rheumatoid arthritis: the effect of disease modifying drugs, including TNF alpha blockers. Ann Rheum Dis. 2006;65:191–4.

    Article  PubMed  CAS  Google Scholar 

  138. Huang Y, Wang H, Wan L, et al. Is systemic lupus erythematosus associated with a declined immunogenicity and poor safety of influenza vaccination?: a systematic review and meta-analysis. Medicine (Baltimore). 2016;95:e3637.

    Article  CAS  Google Scholar 

  139. Del PF, Lagana B, Biselli R, et al. Influenza vaccine administration in patients with systemic lupus erythematosus and rheumatoid arthritis. Safety and immunogenicity. Vaccine. 2006;24:3217–23.

    Article  CAS  Google Scholar 

  140. Thomas K, Vassilopoulos D. Immunization in patients with inflammatory rheumatic diseases. Best Pract Res Clin Rheumatol. 2016;30:946–63.

    Article  PubMed  Google Scholar 

  141. Yates M, Watts RA, Bajema IM, et al. EULAR/ERA-EDTA recommendations for the management of ANCA-associated vasculitis. Ann Rheum Dis. 2016;75:1583–94.

    Article  PubMed  CAS  Google Scholar 

  142. Bodro M, Paterson DL. Has the time come for routine trimethoprim-sulfamethoxazole prophylaxis in patients taking biologic therapies? Clin Infect Dis. 2013;56:1621–8.

    Article  PubMed  CAS  Google Scholar 

  143. Wissmann G, Morilla R, Martin-Garrido I, et al. Pneumocystis jirovecii colonization in patients treated with infliximab. Eur J Clin Invest. 2011;41:343–8.

    Article  PubMed  CAS  Google Scholar 

  144. Ponce CA, Gallo M, Bustamante R, et al. Pneumocystis colonization is highly prevalent in the autopsied lungs of the general population. Clin Infect Dis. 2010;50:347–53.

    Article  PubMed  Google Scholar 

  145. Fritzsche C, Riebold D, Munk-Hartig A, et al. High prevalence of Pneumocystis jirovecii colonization among patients with autoimmune inflammatory diseases and corticosteroid therapy. Scand J Rheumatol. 2012;41:208–13.

    Article  PubMed  CAS  Google Scholar 

  146. Mori S, Sugimoto M. Pneumocystis jirovecii infection: an emerging threat to patients with rheumatoid arthritis. Rheumatology (Oxford). 2012;51:2120–30.

    Article  Google Scholar 

  147. Katsuyama T, Saito K, Kubo S, et al. Prophylaxis for pneumocystis pneumonia in patients with rheumatoid arthritis treated with biologics, based on risk factors found in a retrospective study. Arthritis Res Ther. 2014;16:R43.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Fillatre P, Decaux O, Jouneau S, et al. Incidence of Pneumocystis jirovecii pneumonia among groups at risk in HIV-negative patients. Am J Med. 2014;127:1242–7.

    Article  PubMed  Google Scholar 

  149. Vananuvat P, Suwannalai P, Sungkanuparph S, et al. Primary prophylaxis for Pneumocystis jirovecii pneumonia in patients with connective tissue diseases. Semin Arthritis Rheum. 2011;41:497–502.

    Article  PubMed  Google Scholar 

  150. Liebling M, Rubio E, Ie S. Prophylaxis for Pneumocystis jirovecii pneumonia: is it a necessity in pulmonary patients on high-dose, chronic corticosteroid therapy without AIDS? Expert Rev Respir Med. 2015;9:171–81.

    Article  PubMed  CAS  Google Scholar 

  151. Limper AH, Knox KS, Sarosi GA, et al. An official American Thoracic Society statement: treatment of fungal infections in adult pulmonary and critical care patients. Am J Respir Crit Care Med. 2011;183:96–128.

    Article  PubMed  CAS  Google Scholar 

  152. Cortazar FB, Pendergraft WF III, Wenger J, et al. Effect of continuous B cell depletion with rituximab on pathogenic autoantibodies and total IgG levels in antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheumatol. 2017;69:1045–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Vassilopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, K., Vassilopoulos, D. (2018). Individual Drugs in Rheumatology and the Risk of Infection. In: Ragab, G., Atkinson, T., Stoll, M. (eds) The Microbiome in Rheumatic Diseases and Infection. Springer, Cham. https://doi.org/10.1007/978-3-319-79026-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-79026-8_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-79025-1

  • Online ISBN: 978-3-319-79026-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics