Chronic Recurrent Multifocal Osteomyelitis (CRMO)

  • Polly J. FergusonEmail author


Chronic recurrent multifocal osteomyelitis is an autoinflammatory disease that has a genetic component to disease susceptibility. It is a painful disease in which osteomyelitis occurs in one or more sites. Cultures are sterile and there is typically no improvement with antibiotics. It is associated with a personal or family history of inflammatory disease of the intestine, joints, or skin, most commonly psoriasis or Crohn’s disease. Adults can develop sterile osteomyelitis as part of synovitis, acne, pustulosis, hyperostosis, osteitis (SAPHO) syndrome. CRMO can occur as part of a Mendelian syndrome; however, the vast majority of cases of CRMO and SAPHO syndrome are non-syndromic. Four genes have been identified that when mutated can cause sterile bone inflammation. Mutations in LPIN2, IL1RN, and FBLIM1 have been identified in humans with CRMO and Pstpip2 in a murine model of CRMO. The inflammatory bone disease in the chronic multifocal osteomyelitis (cmo) mouse is IL-1β dependent and neutrophil driven. Syndromic forms of human CRMO are also IL-1 driven, but the role of IL-1 in non-syndromic cases is not clear. Diet-driven changes in the microbiome may play a key role in disease development in murine cmo, as a high-fat diet is associated with dysbiosis and prevents disease manifestations. Fecal transplants from high-fat diet-fed cmo mice can modulate the cmo phenotype. Neutrophils from the mice fed a high-fat diet produced less IL-1β again supporting the role of the neutrophil in cmo disease pathogenesis. The role of the microbiota in human CRMO and SAPHO syndrome is unknown.


Chronic recurrent multifocal osteomyelitis Autoinflammatory 



Chronic multifocal osteomyelitis


Chronic nonbacterial osteomyelitis


Deficiency of the IL-1 receptor antagonist


High-fat diet


Low-fat diet




Nonbacterial osteomyelitis


Nlr family pyrin domain containing 3


Nonsteroidal anti-inflammatory drug


Proline-serine-threonine phosphatase-interacting protein 2


Synovitis, acne, pustulosis, hyperostosis, osteitis


Whole-body magnetic resonance imaging


  1. 1.
    Jansson A, et al. Classification of non-bacterial osteitis: retrospective study of clinical, immunological and genetic aspects in 89 patients. Rheumatology (Oxford). 2007;46(1):154–60.CrossRefGoogle Scholar
  2. 2.
    Giedion A, et al. Subacute and chronic “symmetrical” osteomyelitis. Ann Radiol (Paris). 1972;15(3):329–42.Google Scholar
  3. 3.
    Probst FP, Bjorksten B, Gustavson KH. Radiological aspect of chronic recurrent multifocal osteomyelitis. Ann Radiol (Paris). 1978;21(2–3):115–25.Google Scholar
  4. 4.
    Girschick HJ, et al. Chronic non-bacterial osteomyelitis in children. Ann Rheum Dis. 2005;64(2):279–85.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chamot AM, et al. Acne-pustulosis-hyperostosis-osteitis syndrome. Results of a national survey. 85 cases. Rev Rhum Mal Osteoartic. 1987;54(3):187–96.PubMedGoogle Scholar
  6. 6.
    Jansson AF, Grote V, E.S. Group. Nonbacterial osteitis in children: data of a German incidence surveillance study. Acta Paediatr. 2011;100(8):1150–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Job-Deslandre C, Krebs S, Kahan A. Chronic recurrent multifocal osteomyelitis: five-year outcomes in 14 pediatric cases. Joint Bone Spine. 2001;68(3):245–51.CrossRefPubMedGoogle Scholar
  8. 8.
    Schultz C, et al. Chronic recurrent multifocal osteomyelitis in children. Pediatr Infect Dis J. 1999;18(11):1008–13.CrossRefPubMedGoogle Scholar
  9. 9.
    Huber AM, et al. Chronic recurrent multifocal osteomyelitis: clinical outcomes after more than five years of follow-up. J Pediatr. 2002;141(2):198–203.CrossRefPubMedGoogle Scholar
  10. 10.
    Wipff J, et al. A large national cohort of French patients with chronic recurrent multifocal osteitis. Arthritis Rheumatol. 2015;67(4):1128–37.CrossRefPubMedGoogle Scholar
  11. 11.
    Hedrich CM, et al. Autoinflammatory bone disorders with special focus on chronic recurrent multifocal osteomyelitis (CRMO). Pediatr Rheumatol Online J. 2013;11(1):47.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    El-Shanti HI, Ferguson PJ. Chronic recurrent multifocal osteomyelitis: a concise review and genetic update. Clin Orthop Relat Res. 2007;462:11–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Morbach H, et al. Autoinflammatory bone disorders. Clin Immunol. 2013;147(3):185–96.CrossRefPubMedGoogle Scholar
  14. 14.
    Toussirot E, Dupond JL, Wendling D. Spondylodiscitis in SAPHO syndrome. A series of eight cases. Ann Rheum Dis. 1997;56(1):52–8.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sonozaki H, et al. Clinical features of 53 cases with pustulotic arthro-osteitis. Ann Rheum Dis. 1981;40(6):547–53.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Maugars Y, et al. SAPHO syndrome: a follow-up study of 19 cases with special emphasis on enthesis involvement. J Rheumatol. 1995;22(11):2135–41.PubMedGoogle Scholar
  17. 17.
    Vittecoq O, et al. Evolution of chronic recurrent multifocal osteitis toward spondylarthropathy over the long term. Arthritis Rheum. 2000;43(1):109–19.CrossRefPubMedGoogle Scholar
  18. 18.
    Boutin RD, Resnick D. The SAPHO syndrome: an evolving concept for unifying several idiopathic disorders of bone and skin. AJR Am J Roentgenol. 1998;170(3):585–91.CrossRefPubMedGoogle Scholar
  19. 19.
    Kahn MF. Why the “SAPHO” syndrome? J Rheumatol. 1995;22:2017–9.PubMedGoogle Scholar
  20. 20.
    Jurik AG. Chronic recurrent multifocal osteomyelitis. Semin Musculoskelet Radiol. 2004;8(3):243–53.CrossRefPubMedGoogle Scholar
  21. 21.
    Bousvaros A, et al. Chronic recurrent multifocal osteomyelitis associated with chronic inflammatory bowel disease in children. Dig Dis Sci. 1999;44(12):2500–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Ferguson PJ, El-Shanti HI. Autoinflammatory bone disorders. Curr Opin Rheumatol. 2007;19(5):492–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Khanna G, Sato TS, Ferguson P. Imaging of chronic recurrent multifocal osteomyelitis. Radiographics. 2009;29(4):1159–77.CrossRefPubMedGoogle Scholar
  24. 24.
    Khanna L, El-Khoury GY. SAPHO syndrome—a pictorial assay. Iowa Orthop J. 2012;32:189–95.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Guerin-Pfyffer S, et al. Evaluation of chronic recurrent multifocal osteitis in children by whole-body magnetic resonance imaging. Joint Bone Spine. 2012;79(6):616–20.CrossRefPubMedGoogle Scholar
  26. 26.
    Mandell GA, et al. Bone scintigraphy in the detection of chronic recurrent multifocal osteomyelitis. J Nucl Med. 1998;39(10):1778–83.PubMedGoogle Scholar
  27. 27.
    Fritz J. The contributions of whole-body magnetic resonance imaging for the diagnosis and management of chronic recurrent multifocal osteomyelitis. J Rheumatol. 2015;42(8):1359–60.CrossRefPubMedGoogle Scholar
  28. 28.
    Kennedy MT, et al. Whole body MRI in the diagnosis of chronic recurrent multifocal osteomyelitis. Orthop Traumatol Surg Res. 2012;98(4):461–4.CrossRefPubMedGoogle Scholar
  29. 29.
    Bjorksten B, Boquist L. Histopathological aspects of chronic recurrent multifocal osteomyelitis. J Bone Joint Surg Br. 1980;62(3):376–80.CrossRefGoogle Scholar
  30. 30.
    Girschick HJ, et al. Chronic recurrent multifocal osteomyelitis in children: diagnostic value of histopathology and microbial testing. Hum Pathol. 1999;30(1):59–65.CrossRefPubMedGoogle Scholar
  31. 31.
    Sharma M, Ferguson PJ. Autoinflammatory bone disorders: update on immunologic abnormalities and clues about possible triggers. Curr Opin Rheumatol. 2013;25(5):658–64.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Schilling F, Wagner AD. Azithromycin: an anti-inflammatory effect in chronic recurrent multifocal osteomyelitis? A preliminary report. Z Rheumatol. 2000;59(5):352–3.CrossRefPubMedGoogle Scholar
  33. 33.
    Beck C, et al. Chronic nonbacterial osteomyelitis in childhood: prospective follow-up during the first year of anti-inflammatory treatment. Arthritis Res Ther. 2010;12(2):R74.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhao Y, et al. Physicians’ perspectives on the diagnosis and treatment of chronic nonbacterial osteomyelitis. Int J Rheumatol. 2017;2017:7694942.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zhao Y, Laxer RM, Ferguson PJ. Treatment advances in chronic non-bacterial osteomyelitis and other autoinflammatory bone conditions. Curr Treat Options Rheum. 2017;3(1):17–32.CrossRefGoogle Scholar
  36. 36.
    Ferguson PJ, Sandu M. Current understanding of the pathogenesis and management of chronic recurrent multifocal osteomyelitis. Curr Rheumatol Rep. 2012;14(2):130–41.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Eleftheriou D, et al. Biologic therapy in refractory chronic non-bacterial osteomyelitis of childhood. Rheumatology. 2010;49(8):1505–12.CrossRefPubMedGoogle Scholar
  38. 38.
    Roderick M, et al. Efficacy of pamidronate therapy in children with chronic non-bacterial osteitis: disease activity assessment by whole body magnetic resonance imaging. Rheumatology (Oxford). 2014;53(11):1973–6.CrossRefGoogle Scholar
  39. 39.
    Hofmann SR, et al. Chronic nonbacterial osteomyelitis: pathophysiological concepts and current treatment strategies. J Rheumatol. 2016;43(11):​1956–64.CrossRefPubMedGoogle Scholar
  40. 40.
    Hofmann C, et al. A standardized clinical and radiological follow-up of patients with chronic non-bacterial osteomyelitis treated with pamidronate. Clin Exp Rheumatol. 2014;32(4):604–9.PubMedGoogle Scholar
  41. 41.
    Park H, et al. Lighting the fires within: the cell biology of autoinflammatory diseases. Nat Rev Immunol. 2012;12(8):570–80.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Aksentijevich I, et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N Engl J Med. 2009;360(23):2426–37.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Reddy S, et al. An autoinflammatory disease due to homozygous deletion of the IL1RN locus. N Engl J Med. 2009;360(23):2438–44.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Jesus AA, et al. A novel mutation of IL1RN in the deficiency of interleukin-1 receptor antagonist syndrome: description of two unrelated cases from Brazil. Arthritis Rheum. 2011;63(12):4007–17.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Minkis K, et al. Interleukin 1 receptor antagonist deficiency presenting as infantile pustulosis mimicking infantile pustular psoriasis. Arch Dermatol. 2012;148(6):747–52.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Jesus AA, Goldbach-Mansky R. IL-1 blockade in autoinflammatory syndromes. Annu Rev Med. 2014;65:223–44.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ferguson PJ, et al. Homozygous mutations in LPIN2 are responsible for the syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia (Majeed syndrome). J Med Genet. 2005;42(7):551–7.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Majeed HA, et al. The syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia. Report of a new family and a review. Eur J Pediatr. 2001;160(12):705–10.CrossRefPubMedGoogle Scholar
  49. 49.
    Rao AP, et al. Phenotypic variability in Majeed syndrome. J Rheumatol. 2016;43(6):1258–9.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Herlin T, et al. Efficacy of anti-IL-1 treatment in Majeed syndrome. Ann Rheum Dis. 2013;72(3):410–3.CrossRefPubMedGoogle Scholar
  51. 51.
    Lorden G, et al. Lipin-2 regulates NLRP3 inflammasome by affecting P2X7 receptor activation. J Exp Med. 2016;214(2):511–28.CrossRefPubMedGoogle Scholar
  52. 52.
    Cox AJ, Darbro BW, Laxer RM, Velez G, Bing X, Finer AL, Erives A, Mahajan VB, Bassuk AG, Ferguson PJ. Recessive coding and regulatory mutations in FBLIM1 underlie the pathogenesis of chronic recurrent multifocal osteomyelitis (CRMO). PLoS One. 2017;12(3):e0169687.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Golla A, et al. Chronic recurrent multifocal osteomyelitis (CRMO): evidence for a susceptibility gene located on chromosome 18q21.3-18q22. Eur J Hum Genet. 2002;10(3):217–21.CrossRefPubMedGoogle Scholar
  54. 54.
    Hofmann SR, et al. Chronic non-bacterial osteomyelitis is associated with impaired Sp1 signaling, reduced IL10 promoter phosphorylation, and reduced myeloid IL-10 expression. Clin Immunol. 2011;141(3):317–27.CrossRefPubMedGoogle Scholar
  55. 55.
    Hofmann SR, et al. Update: cytokine dysregulation in chronic nonbacterial osteomyelitis (CNO). Int J Rheumatol. 2012;2012:310206.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ferguson PJ, et al. A missense mutation in pstpip2 is associated with the murine autoinflammatory disorder chronic multifocal osteomyelitis. Bone. 2006;38(1):41–7.CrossRefPubMedGoogle Scholar
  57. 57.
    Grosse J, et al. Mutation of mouse Mayp/Pstpip2 causes a macrophage autoinflammatory disease. Blood. 2006;107(8):3350–8.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Liao HJ, et al. Increased neutrophil infiltration, IL-1 production and a SAPHO syndrome-like phenotype in PSTPIP2-deficient mice. Rheumatology (Oxford). 2015;54(7):1317–26.CrossRefGoogle Scholar
  59. 59.
    Byrd L, et al. Chronic multifocal osteomyelitis, a new recessive mutation on chromosome 18 of the mouse. Genomics. 1991;11(4):794–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Chitu V, et al. Primed innate immunity leads to autoinflammatory disease in PSTPIP2-deficient cmo mice. Blood. 2009;114(12):2497–505.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Cassel SL, et al. Inflammasome-independent IL-1beta mediates autoinflammatory disease in Pstpip2-deficient mice. Proc Natl Acad Sci U S A. 2014;111(3):1072–7.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Lukens JR, et al. Critical role for inflammasome-independent IL-1beta production in osteomyelitis. Proc Natl Acad Sci U S A. 2014;111(3):1066–71.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lukens JR, et al. Dietary modulation of the microbiota affects autoinflammatory disease. Nature. 2014;516(7530):246–9.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Xiao G, et al. Critical role of filamin-binding LIM protein 1 (FBLP-1)/migfilin in regulation of bone remodeling. J Biol Chem. 2012;287(25):21450–60.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Hutchins AP, Poulain S, Miranda-Saavedra D. Genome-wide analysis of STAT3 binding in vivo predicts effectors of the anti-inflammatory response in macrophages. Blood. 2012;119(13):e110–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Iowa Carver College of MedicineIowa CityUSA

Personalised recommendations