Sjögren’s Syndrome

  • Luca QuartuccioEmail author
  • Saviana Gandolfo
  • Sara Zandonella Callegher
  • Salvatore De Vita


Sjögren’s syndrome (SS) is a systemic autoimmune disease characterized by exocrine gland dysfunction and destruction, mainly localized at the level of salivary and lacrimal glands, leading to dryness of the mouth and eyes, as the most frequent symptoms of the disease. From a pathological point of view, SS is an exocrinopathy (i.e. an autoimmune epitheliitis of the exocrine glands) characterized by dense lymphocytic infiltrates of glandular tissue and B-cell hyperreactivity.

As an autoimmune disorder, SS shows a broad clinical presentation and evolution, usually starting from sicca symptoms to involvement of multiple organs. Importantly, SS is the autoimmune disease where lymphoma risk is the highest. Thus, it can represent a very good model of lymphomagenesis, where a benign lymphoproliferation can evolve into a malignant process. Thus, the study of SS may provide insights into the pathogenesis of autoimmune disorders and lymphoma. Additionally, SS is one of the so-called rheumatoid factor-positive autoimmune diseases (as rheumatoid arthritis or mixed cryoglobulinaemia), and rheumatoid factor is a well-recognized autoantibody often found in diseases other than autoimmune diseases, such as infectious diseases, and in particular chronic infectious ones (i.e. HCV). A viral infection has been long suspected for induction of SS, since transient or persistent infection of epithelial cells by a putative virus may be an initiating event for local autoimmune reactions. Many types of viruses were the objective of several research studies focusing on a possible role of such viruses in the etiopathogenesis of SS. However, results have been inconclusive up till now. Nevertheless, similarities between chronic inflammatory sialadenitis in the course of chronic infections (i.e. HCV, HIV) and SS sialadenitis, as well as the biological evidence of a local chronic (auto)antigen stimulation in the salivary glands of SS patients, leave question of the possible role of infections (even unknown) in the pathogenesis of SS unanswered.


Sjögren’s syndrome Hepatitis Lymphoma Infection Cryoglobulinaemia 



Aryl hydrocarbon receptor


Adult T-cell leukaemia-lymphoma


B-cell activating factor




Chlamydia psittaci




Epstein-Barr virus


Germinal centre


G-protein-coupled receptor


HTLV-1 associated myelopathy/tropical spastic paraparesis


Hepatitis B virus


Hepatitis C virus


Human immunodeficiency virus


Helicobacter pylori


Human T-lymphotropic virus type 1


Mucosa-associated lymphoid tissue


Murine CMV


Myoepithelial sialadenitis


Non-Hodgkin lymphoma


Salivary gland


Systemic lupus erythematosus


Sjögren’s syndrome


  1. 1.
    Slobbe RL, Pruijn GJ, Van Venrooij WJ. Ro (SS-A) and La (SS-B) ribonucleoprotein complexes: structure, function and antigenicity. Ann Med Interne (Paris). 1991;142:592–600.Google Scholar
  2. 2.
    Bachmann M, Falke D, Müller WE. Is La protein involved in autoimmunization and inflammatory events during disease? Characterization of La protein as an unwinding enzyme. Mol Biol Rep. 1990;14:49–50.CrossRefPubMedGoogle Scholar
  3. 3.
    Rosen CF, Poon R, Drucker DJ. UVB radiation-activated genes induced by transcriptional and posttranscriptional mechanisms in rat keratinocytes. Am J Phys. 1995;268:C846–55.CrossRefGoogle Scholar
  4. 4.
    Yannopoulos DI, Roncin S, Lamour A, Pennec YL, Moutsopoulos HM, Youinou P. Conjunctival epithelial cells from patients with Sjögren’s syndrome inappropriately express major histocompatibility complex molecules, La(SSB) antigen, and heat-shock proteins. J Clin Immunol. 1992;12:259–65.CrossRefPubMedGoogle Scholar
  5. 5.
    Fleck M, Zhang HG, Kern ER, et al. Treatment of chronic sialadenitis in a murine model of Sjögren’s syndrome by local fasL gene transfer. Arthritis Rheumatol. 2001;44:964–73.CrossRefGoogle Scholar
  6. 6.
    Abu-Helu RF, Dimitriou ID, Kapsogeorgou EK, et al. Induction of salivary gland epithelial cell injury in Sjogren’s syndrome: in vitro assessment of T cell-derived cytokines and Fas protein expression. J Autoimmun. 2001;17:141–53.CrossRefPubMedGoogle Scholar
  7. 7.
    Mavragani C, Crow MK. Activation of the type I interferon pathway in primary Sjogren’s syndrome. J Autoimmun. 2010;35:225–31.CrossRefPubMedGoogle Scholar
  8. 8.
    De Re V, De Vita S, Gasparotto D, et al. Salivary gland B cell lymphoproliferative disorders in Sjögren’s syndrome present a restricted use of antigen receptor gene segments similar to those used by hepatitis C virus-associated non-Hodgkin’s lymphomas. Eur J Immunol. 2002;32:903–10.CrossRefPubMedGoogle Scholar
  9. 9.
    Zucca E, Bertoni F, Vannata B, et al. Emerging role of infectious etiologies in the pathogenesis of marginal zone B-cell lymphomas. Clin Cancer Res. 2014;20:5207–16.CrossRefPubMedGoogle Scholar
  10. 10.
    Ponzoni M, Ferreri AJ, Guidoboni M, et al. Chlamydia infection and lymphomas: association beyond ocular adnexal lymphomas highlighted by multiple detection methods. Clin Cancer Res. 2008;14:5794–800.CrossRefPubMedGoogle Scholar
  11. 11.
    Lecuit M, Abachin E, Martin A, et al. Immunoproliferative small intestinal disease associated with Campylobacter jejuni. N Engl J Med. 2004;350:239–48.CrossRefPubMedGoogle Scholar
  12. 12.
    Schollkopf C, Melbye M, Munksgaard L, et al. Borrelia infection and risk of non-Hodgkin lymphoma. Blood. 2008;111:5524–9.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Wotherspoon AC, Ortiz-Hidalgo C, Falzon MR, et al. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet. 1991;338:1175–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Croia C, Astorri E, Murray-Brown W, et al. Implication of Epstein-Barr virus infection in disease-specific autoreactive B cell activation in ectopic lymphoid structures of Sjogren’s syndrome. Arthritis Rheumatol. 2014;66:2545–57.CrossRefPubMedGoogle Scholar
  15. 15.
    Fabris M, Dolcetti R, Pasini E, et al. High prevalence of Chlamydophila psittaci subclinical infection in Italian patients with Sjogren’s syndrome and parotid gland marginal zone B-cell lymphoma of MALT-type. Clin Exp Rheumatol. 2014;32:61–5.PubMedGoogle Scholar
  16. 16.
    Blank M, Shoenfeld Y, Perl A. Cross-talk of the environment with the host genome and the immune system through endogenous retroviruses in systemic lupus erythematosus. Lupus. 2009;18:1136–43.CrossRefPubMedGoogle Scholar
  17. 17.
    Mizokami A, Eguchi K, Moriuchi R, et al. Low copy numbers of human T-cell lymphotropic virus type I (HTLV-I) tax-like DNA detected in the salivary gland of seronegative patients with Sjögren’s syndrome in an HTLV-I endemic area. Scand J Rheumatol. 1998;27:435–40.CrossRefPubMedGoogle Scholar
  18. 18.
    Mariette X. Lymphomas complicating Sjogren’s syndrome and hepatitis C virus infection may share a common pathogenesis: chronic stimulation of rheumatoid factor B cells. Ann Rheum Dis. 2001;60:1007–10.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    De Vita S, Damato R, De Marchi G, et al. True primary Sjogren’s syndrome in a subset of patients with hepatitis C infection: a model linking chronic infection to chronic sialadenitis. Isr Med Assoc J. 2002;4:1101–5.PubMedGoogle Scholar
  20. 20.
    De Re V, De Vita S, Marzotto A, et al. Sequence analysis of the immunoglobulin antigen receptor of hepatitis C virus-associated non-Hodgkin lymphomas suggests that the malignant cells are derived from the rheumatoid factor-producing cells that occur mainly in type II cryoglobulinemia. Blood. 2000;96:3578–84.PubMedGoogle Scholar
  21. 21.
    De Re V, Sansonno D, Simula MP, et al. HCV-NS3 and IgG-Fc crossreactive IgM in patients with type II mixed cryoglobulinemia and B-cell clonal proliferations. Leukemia. 2006;20:1145–54.CrossRefPubMedGoogle Scholar
  22. 22.
    Croia C, Serafini B, Bombardieri M, et al. Epstein-Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Ann Rheum Dis. 2013;72:1559–68.CrossRefPubMedGoogle Scholar
  23. 23.
    Szymula A, Rosenthal J, Szczerba BM, et al. T cell epitope mimicry between Sjogren’s syndrome antigen A (SSA)/Ro60 and oral, gut, skin and vaginal bacteria. Clin Immunol. 2014;152:1–9.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Inoue H, Mishima K, Yamamoto-Yoshida S, et al. Aryl hydrocarbon receptor-mediated induction of EBV reactivation as a risk factor for Sjogren’s syndrome. J Immunol. 2012;188:4654–62.CrossRefPubMedGoogle Scholar
  25. 25.
    Nakamura H, Kawakami A, Eguchi K. Mechanisms of autoantibody production and the relationship between autoantibodies and the clinical manifestations in Sjogren’s syndrome. Transl Res. 2006;148:281–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Hida A, Imaizumi M, Sera N, et al. Association of human T lymphotropic virus type I with Sjogren syndrome. Ann Rheum Dis. 2010;69:2056–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Triantafyllopoulou A, Tapinos N, Moutsopoulos HM. Evidence for coxsackievirus infection in primary Sjögren’s syndrome. Arthritis Rheum. 2004;50:2897–902.CrossRefPubMedGoogle Scholar
  28. 28.
    Gottenberg JE, Pallier C, Ittah M, et al. Failure to confirm coxsackievirus infection in primary Sjögren’s syndrome. Arthritis Rheum. 2006;54:2026–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Papasteriades CA, Skopouli FN, Drosos AA, et al. HLA-alloantigen associations in Greek patients with Sjögren’s syndrome. J Autoimmun. 1988;1:85–90.CrossRefPubMedGoogle Scholar
  30. 30.
    Gottenberg JE, Busson M, Loiseau P, et al. In primary Sjögren’s syndrome, HLA class II is associated exclusively with autoantibody production and spreading of the autoimmune response. Arthritis Rheum. 2003;48:2240–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Stathopoulou EA, Routsias JG, Stea EA, et al. Cross-reaction between antibodies to the major epitope of Ro60 kD autoantigen and a homologous peptide of Coxsackie virus 2B protein. Clin Exp Immunol. 2005;141:148–54.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Popovic M, Reitz MS Jr, Sarngadharan MG, et al. The virus of Japanese adult T-cell leukaemia is a member of the human T-cell leukaemia virus group. Nature. 1982;300(5887):63–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Gessain A, Barin F, Vernant JC, et al. Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis. Lancet. 1985;2:407–10.CrossRefPubMedGoogle Scholar
  34. 34.
    Osame M, Usuku K, Izumo S, Ijichi N, Amitani H, Igata A, Matsumoto M, Tara M. HTLV-I associated myelopathy, a new clinical entity. Lancet. 1986;1:1031–2.CrossRefPubMedGoogle Scholar
  35. 35.
    Nakamura H, Kawakami A. What is the evidence for Sjögren’s syndrome being triggered by viral infection? Subplot: infections that cause clinical features of Sjögren’s syndrome. Curr Opin Rheumatol. 2016;28:390–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Terada K, Katamine S, Eguchi K, et al. Prevalence of serum and salivary antibodies to HTLV-1 in Sjögren’s syndrome. Lancet. 1994;344:1116–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Eguchi K, Matsuoka N, Ida H, et al. Primary Sjögren’s syndrome with antibodies to HTLV-I: clinical and laboratory features. Ann Rheum Dis. 1992;51:769–76.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Bélec L, Georges MC, Pillot J, et al. Antibodies to HTLV-I in Sjögren’s syndrome. Lancet. 1995;345:71–2.CrossRefPubMedGoogle Scholar
  39. 39.
    Green JE, Hinrichs SH, Vogel J, et al. Exocrinopathy resembling Sjögren’s syndrome in HTLV-1 tax transgenic mice. Nature. 1989;341:72–4.CrossRefPubMedGoogle Scholar
  40. 40.
    Sumida T, Yonaha F, Maeda T, et al. Expression of sequences homologous to HTLV-I tax gene in the labial salivary glands of Japanese patients with Sjögren’s syndrome. Arthritis Rheumatol. 1994;37:545–50.CrossRefGoogle Scholar
  41. 41.
    Mariette X, Agbalika F, Daniel MT, et al. Detection of human T lymphotropic virus type I tax gene in salivary gland epithelium from two patients with Sjögren’s syndrome. Arthritis Rheumatol. 1993;36:1423–8.CrossRefGoogle Scholar
  42. 42.
    Mariette X, Cherot P, Cazals D, et al. Antibodies to HTLV-I in Sjögren’s syndrome. Lancet. 1995;345:71.CrossRefPubMedGoogle Scholar
  43. 43.
    Nakamura H, Eguchi K, Nakamura T, et al. High prevalence of Sjögren’s syndrome in patients with HTLV-I associated myelopathy. Ann Rheum Dis. 1997;56:167–72.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Izumi M, Nakamura H, Nakamura T, et al. Sjögren’s syndrome (SS) in patients with human T cell leukemia virus I associated myelopathy: paradoxical features of the major salivary glands compared to classical SS. J Rheumatol. 1999;26:2609–14.PubMedGoogle Scholar
  45. 45.
    Nakamura H, Kawakami A, Hayashi T, et al. Low prevalence of ectopic germinal Centre formation in patients with HTLV-I-associated Sjogren’s syndrome. Rheumatology (Oxford). 2009;48:854–5.CrossRefGoogle Scholar
  46. 46.
    Ansel KM, Ngo VN, Hyman PL, et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature. 2000;406:309–14.CrossRefGoogle Scholar
  47. 47.
    Ohyama Y, Nakamura S, Hara H, et al. Accumulation of human T lymphotropic virus type I-infected T cells in the salivary glands of patients with human T lymphotropic virus type I-associated Sjögren’s syndrome. Arthritis Rheumatol. 1998;41:1972–8.CrossRefGoogle Scholar
  48. 48.
    Nakamura H, Takahashi Y, Yamamoto-Fukuda T, et al. Direct infection of primary salivary gland epithelial cells by human T lymphotropic virus type I in patients with Sjögren’s syndrome. Arthritis Rheumatol. 2015;67:1096–106.CrossRefPubMedGoogle Scholar
  49. 49.
    Thorley-Lawson DA. Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol. 2001;1:75–82.CrossRefPubMedGoogle Scholar
  50. 50.
    Fox RI, Pearson G, Vaughan JH. Detection of Epstein-Barr virus-associated antigens and DNA in salivary gland biopsies from patients with Sjogren’s syndrome. J Immunol. 1986;137:3162–8.PubMedGoogle Scholar
  51. 51.
    Mariette X, Gozlan J, Clerc D, et al. Detection of Epstein-Barr virus DNA by in situ hybridization and polymerase chain reaction in salivary gland biopsy specimens from patients with Sjögren’s syndrome. Am J Med. 1991;90:286–94.CrossRefPubMedGoogle Scholar
  52. 52.
    Wen S, Shimizu N, Yoshiyama H, et al. Association of Epstein-Barr virus (EBV) with Sjögren’s syndrome: differential EBV expression between epithelial cells and lymphocytes in salivary glands. Am J Pathol. 1996;149:1511–7.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Pflugfelder SC, Crouse CA, Monroy D, et al. Epstein-Barr virus and the lacrimal gland pathology of Sjögren’s syndrome. Am J Pathol. 1993;143:49–64.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Saito I, Servenius B, Compton T, et al. Detection of Epstein-Barr virus DNA by polymerase chain reaction in blood and tissue biopsies from patients with Sjogren’s syndrome. J Exp Med. 1989;169:2191–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Inoue N, Harada S, Miyasaka N, et al. Analysis of antibody titers to Epstein-Barr virus nuclear antigens in sera of patients with Sjögren’s syndrome and with rheumatoid arthritis. J Infect Dis. 1991;164:22–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Yamaoka K, Miyasaka N, Yamamoto K. Possible involvement of Epstein-Barr virus in polyclonal B cell activation in Sjögren’s syndrome. Arthritis Rheumatol. 1988;31:1014–21.CrossRefGoogle Scholar
  57. 57.
    Tateishi M, Saito I, Yamamoto K, et al. Spontaneous production of Epstein-Barr virus by B lymphoblastoid cell lines obtained from patients with Sjögren’s syndrome. Possible involvement of a novel strain of Epstein-Barr virus in disease pathogenesis. Arthritis Rheum. 1993;36:827–35.CrossRefPubMedGoogle Scholar
  58. 58.
    Vaughan JH, Valbracht JR, Nguyen MD, et al. Epstein-Barr virus-induced autoimmune responses. I. Immunoglobulin M autoantibodies to proteins mimicking and not mimicking Epstein-Barr virus nuclear antigen-1. J Clin Invest. 1995;95:1306–15.PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Nagata Y, Inoue H, Yamada K, et al. Activation of Epstein-Barr virus by saliva from Sjogren’s syndrome patients. Immunology. 2004;111:223–9.PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Iwakiri D, Zhou L, Samanta M, et al. Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from toll-like receptor 3. J Exp Med. 2009;206:2091–9.PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Lehours P, Yilmaz O. Epidemiology of Helicobacter pylori infection. Helicobacter. 2007;12(Suppl 1):1–3.CrossRefPubMedGoogle Scholar
  62. 62.
    Cover TL, Blaser MJ. Helicobacter pylori in health and disease. Gastroenterology. 2009;136:1863–73.PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Sheu BS, Yang HB, Yeh YC, et al. Helicobacter pylori colonization of the human gastric epithelium: a bug’s first step is a novel target for us. J Gastroenterol Hepatol. 2010;25:26–32.CrossRefPubMedGoogle Scholar
  64. 64.
    Blaser MJ, Atherton JC. Helicobacter pylori persistence: biology and disease. J Clin Invest. 2004;113:321–33.PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Raghwan R. Host cell contact induces fur-dependent expression of virulence factors CagA and VacA in Helicobacter pylori. Helicobacter. 2014;19:17–25.CrossRefPubMedGoogle Scholar
  66. 66.
    Chan AO, Chu KM, Huang C, et al. Association between Helicobacter pylori infection and interleukin 1beta polymorphism predispose to CpG island methylation in gastric cancer. Gut. 2007;56:595–7.CrossRefPubMedGoogle Scholar
  67. 67.
    Radić M. Role of Helicobacter pylori infection in autoimmune systemic rheumatic diseases. World J Gastroenterol. 2014;20:12839–46.PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    Radić M, Martinović Kaliterna D, Bonacin D, et al. Correlation between Helicobacter pylori infection and systemic sclerosis activity. Rheumatology (Oxford). 2010;49:1784–5.CrossRefGoogle Scholar
  69. 69.
    Radić M, Kaliterna DM, Bonacin D, et al. Is Helicobacter pylori infection a risk factor for disease severity in systemic sclerosis? Rheumatol Int. 2013;33:2943–8.CrossRefPubMedGoogle Scholar
  70. 70.
    Gasbarrini A, Massari I, Serricchio M, et al. Helicobacter pylori eradication ameliorates primary Raynaud’s phenomenon. Dig Dis Sci. 1998;43:1641–5.CrossRefPubMedGoogle Scholar
  71. 71.
    Showji Y, Nozawa R, Sato K, et al. Seroprevalence of Helicobacter pylori infection in patients with connective tissue diseases. Microbiol Immunol. 1996;40:499–503.CrossRefPubMedGoogle Scholar
  72. 72.
    Sorrentino D, Faller G, De Vita S, et al. Helicobacter pylori associated antigastric autoantibodies: role in Sjögren’s syndrome gastritis. Helicobacter. 2004;9:46–53.CrossRefPubMedGoogle Scholar
  73. 73.
    El Miedany YM, Baddour M, Ahmed I, et al. Sjogren’ s syndrome: concomitant H. pylori infection and possible correlation with clinical parameters. Joint Bone Spine. 2005;72:135–41.CrossRefPubMedGoogle Scholar
  74. 74.
    Ramos-Casals M, Loustaud-Ratti V, De Vita S, et al. Sjögren syndrome associated with hepatitis C virus: a multicenter analysis of 137 cases. Medicine. 2005;84:81–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Pasoto SG, Ribeiro CA, Bonfa E. Update on infections and vaccinations in systemic lupus erythematosus and Sjögren’s syndrome. Curr Opin Rheumatol. 2014;26:528–37.CrossRefPubMedGoogle Scholar
  76. 76.
    Haddad J, Deny P, Munz-Gotheil C, et al. Lymphocytic sialadenitis of Sjogren’s syndrome associated with chronic hepatitis C virus liver disease. Lancet. 1992;339:321–3.CrossRefPubMedGoogle Scholar
  77. 77.
    Wang Y, Dou H, Liu G, et al. Hepatitis C virus infection and the risk of Sjögren or sicca syndrome: a meta-analysis. Microbiol Immunol. 2014;58:675–87.CrossRefPubMedGoogle Scholar
  78. 78.
    Nagao Y, Hanada S, Shishido S, et al. Incidence of Sjögren’s syndrome in Japanese patients with hepatitis C virus infection. J Gatroenterol Hepatol. 2003;18:258–66.CrossRefGoogle Scholar
  79. 79.
    Ramos-Casals M, Garcia-Carrasco M, Cervera R, et al. Sjogren’s syndrome and hepatitis C virus. Clin Rheumatol. 1999;18:93–100.CrossRefPubMedGoogle Scholar
  80. 80.
    Loustaud-Ratti V, Riche A, Liozon E, et al. Prevalence and characteristics of Sjogren’s syndrome or Sicca syndrome in chronic hepatitis C virus infection: a prospective study. J Rheumatol. 2001;28:2245–51.PubMedGoogle Scholar
  81. 81.
    Cacoub P, Renou C, Rosenthal E, et al. Extrahepatic manifestations associated with hepatitis C virus infection. A prospective multicenter study of 321 patients. Infectieuses sur le Virus de l’Hepatite C. Medicine (Baltimore). 2000;79:47–56.CrossRefGoogle Scholar
  82. 82.
    Porter SR, Scully C, Lodi G, et al. Lack of association between hepatitis C virus and Sjogren’s syndrome. Oral Dis. 1996;2:183–4.CrossRefPubMedGoogle Scholar
  83. 83.
    Marson P, Ostuni PA, Vicarioto M, et al. Anti-hepatitis C virus serology in primary Sjogren’s syndrome: no evidence of cross-reactivity between rheumatoid factor and specific viral proteins. Clin Exp Rheumatol. 1991;9:661–2.PubMedGoogle Scholar
  84. 84.
    Scott CA, Avellini C, Desinan L, et al. Chronic lymphocytic sialoadenitis in HCV-related chronic liver disease: comparison of Sjögren’s syndrome. Histopathology. 1997;30:4–8.CrossRefGoogle Scholar
  85. 85.
    Garcia-Carrasco M, Ramos-Casals M, Rosas J, et al. Primary Sjogren syndrome: clinical and immunologic disease patterns in a cohort of 400 patients. Medicine (Baltimore). 2002;81:270–80.CrossRefGoogle Scholar
  86. 86.
    Himoto T, Masaki T. Extrahepatic manifestations and autoantibodies in patients with hepatitis C virus infection. Clin Dev Immunol. 2012;2012:871401.PubMedCentralCrossRefPubMedGoogle Scholar
  87. 87.
    Ramos-Casals M, Font J. Extrahepatic manifestations in patients with chronic hepatitis C virus infection. Curr Opin Rheumatol. 2005;17:447–55.PubMedGoogle Scholar
  88. 88.
    De Vita S, Quartuccio L, Salvin S, et al. Cryoglobulinaemia related to Sjogren’s syndrome or HCV infection: differences based on the pattern of bone marrow involvement, lymphoma evolution and laboratory tests after parotidectomy. Rheumatology (Oxford). 2012;51:627–33.CrossRefGoogle Scholar
  89. 89.
    Potthoff A, Witte T, Rifai K, et al. Prevalence of alpha-fodrin antibodies in patients with chronic hepatitis C infection and Sjögren syndrome. Scand J Gastroenterol. 2009;44:994–1003.CrossRefPubMedGoogle Scholar
  90. 90.
    Smyth CM, McKiernan SM, Hagan R, et al. Chronic hepatitis C infection and sicca syndrome: a clear association with HLA DQB1*02. Eur J Gastroenterol Hepatol. 2007;19:493–8.CrossRefPubMedGoogle Scholar
  91. 91.
    Igoe A, Scofield HR. Autoimmunity and infection in Sjögren’s syndrome. Curr Opin Rheumatol. 2013;25:480–7.PubMedCentralCrossRefPubMedGoogle Scholar
  92. 92.
    Toussirot E, Le Huédé G, Mougin C, et al. Presence of hepatitis C virus RNA in the salivary glands of patients with Sjögren’s syndrome and hepatitis C virus infection. J Rheumatol. 2002;29:2382–5.PubMedGoogle Scholar
  93. 93.
    Grossmann Sde MC, Teixeira R, de Oliveira GC, et al. Xerostomia, hyposalivation and sialadenitis in patients with chronic hepatitis C are not associated with the detection of HCV RNA in saliva or salivary glands. J Clin Pathol. 2010;63:1002–7.CrossRefPubMedGoogle Scholar
  94. 94.
    Koike K, Moriya K, Ishibashi K, et al. Sialadenitis histologically resembling Sjogren syndrome in mice transgenic for hepatitis C virus envelope genes. Proc Natl Acad Sci U S A. 1997;94:233–6.PubMedCentralCrossRefPubMedGoogle Scholar
  95. 95.
    Rosa D, Saletti G, De Gregorio E, et al. Activation of naïve B lymphocytes via CD81, a pathogenetic mechanism for hepatitis C virus-associated B lymphocyte disorders. Proc Natl Acad Sci U S A. 2005;102:18544–9.PubMedCentralCrossRefPubMedGoogle Scholar
  96. 96.
    Machida K, Cheng KT-H, Pavio N, et al. Hepatitis C virus E2-CD81 interaction induces hypermutation of the immunoglobulin gene in B cells. J Virol. 2005;79:8079–89.PubMedCentralCrossRefPubMedGoogle Scholar
  97. 97.
    Roughan JE, Reardon KM, Cogburn KE, et al. Chronic hepatitis C virus infection breaks tolerance and drives polyclonal expansion of autoreactive B cells. Clin Vaccine Immunol. 2012;19:1027–37.PubMedCentralCrossRefPubMedGoogle Scholar
  98. 98.
    Fabris M, Quartuccio L, Sacco S, et al. B-Lymphocyte stimulator (BLyS) up-regulation in mixed cryoglobulinaemia syndrome and hepatitis-C virus infection. Rheumatology. 2007;46:37–43.CrossRefPubMedGoogle Scholar
  99. 99.
    De Vita S, Quartuccio L, Salvin S, et al. Sequential therapy with belimumab followed by rituximab in Sjögren’s syndrome associated with B-cell lymphoproliferation and overexpression of BAFF: evidence for long-term efficacy. Clin Exp Rheumatol. 2014;32:490–4.PubMedGoogle Scholar
  100. 100.
    Rama M, Anaya J-M, Barzilai O, et al. The putative protective role of hepatitis B virus (HBV) infection from autoimmune disorders. Autoimmun Rev. 2008;7:621–5.CrossRefGoogle Scholar
  101. 101.
    Ichiki Y, He XS, Shimoda S, et al. T cell immunity in hepatitis B and hepatitis C virus infection: implications for autoimmunity. Autoimmun Rev. 2005;4:82–95.CrossRefPubMedGoogle Scholar
  102. 102.
    Cacoub P, Saadoun D, Bourliere M, et al. Hepatitis B virus genotypes and extrahepatic manifestations. J Hepatol. 2005;43:764–70.CrossRefPubMedGoogle Scholar
  103. 103.
    Chen M-H, Hsiao L-T, Chen M-H, et al. Clinical significance of chronic hepatitis B virus infection in patients with primary Sjögren’s syndrome. Clin Rheumatol. 2012;31:309–15.CrossRefPubMedGoogle Scholar
  104. 104.
    Marcos M, Alvarez F, Brito-Zerón P, et al. Chronic hepatitis B virus infection in Sjögren’s syndrome. Prevalence and clinical significance in 603 patients. Autoimmun Rev. 2009;8:616–20.CrossRefPubMedGoogle Scholar
  105. 105.
    Bach JF. Protective role of infections and vaccinations on autoimmune diseases. J Autoimmun. 2001;16:347–53.CrossRefPubMedGoogle Scholar
  106. 106.
    Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med. 2002;347(12):911–20.CrossRefPubMedGoogle Scholar
  107. 107.
    Osborn MK, Lok AS. Antiviral options for the treatment of chronic hepatitis B. J Antimicrob Chemother. 2006;57:1030–4.CrossRefPubMedGoogle Scholar
  108. 108.
    Koichi Y, Arvin AM, Campadelli-Fiume G, et al. Human herpesviruses: biology, therapy and immunoprophylaxis. Cambridge: Cambridge University Press; 2007.Google Scholar
  109. 109.
    Barzilai O, Sherer Y, Ram M, et al. Epstein-Barr virus and cytomegalovirus in autoimmune diseases: are they truly notorious? A preliminary report. Ann N Y Acad Sci. 2007;1108:567–77.CrossRefPubMedGoogle Scholar
  110. 110.
    Ohyama Y, Carroll VA, Deshmukh U, et al. Severe focal sialadenitis and dacryoadenitis in NZM2328 mice induced by MCMV: a novel model for human Sjogren’s syndrome. J Immunol. 2006;177:7391–7.CrossRefPubMedGoogle Scholar
  111. 111.
    Cardin RD, Schaefer GC, Allen JR, et al. The M33 chemokine receptor homolog of murine cytomegalovirus exhibits a differential tissue-specific role during in vivo replication and latency. J Virol. 2009;83:7590–601.PubMedCentralCrossRefPubMedGoogle Scholar
  112. 112.
    Davis-Poynter NJ, Lynch DM, Vally H, et al. Identification and characterization of a G protein-coupled receptor homolog encoded by murine cytomegalovirus. J Virol. 1997;71:1521–9.PubMedCentralPubMedGoogle Scholar
  113. 113.
    De Re V, De Vita S, Battistella V, et al. Absence of human parvovirus B19 DNA in myoepithelial sialadenitis of primary Sjögren’s syndrome. Ann Rheum Dis. 2002;61:855–6.PubMedCentralCrossRefPubMedGoogle Scholar
  114. 114.
    Ramos-Casals M, Cervera R, García-Carrasco M, et al. Cytopenia and past human parvovirus B19 infection in patients with primary Sjögren’s syndrome. Semin Arthritis Rheumatol. 2000;29:373–8.CrossRefGoogle Scholar
  115. 115.
    Gallo A, Tandon M, Illei G, Alevizos I. Discovery and validation of novel microRNAs in Sjögren’s syndrome salivary glands. Clin Exp Rheumatol. 2014;32:761–2.PubMedGoogle Scholar
  116. 116.
    Giannopoulou EG, Elemento O, Ivashkiv LB. Use of RNA sequencing to evaluate rheumatic disease patients. Arthritis Res Ther. 2015;17:167.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Luca Quartuccio
    • 1
    Email author
  • Saviana Gandolfo
    • 1
  • Sara Zandonella Callegher
    • 1
  • Salvatore De Vita
    • 1
  1. 1.Rheumatology Clinic, Academic Hospital Santa Maria della Misericordia, Udine, Department of Medical and Biological SciencesUdineItaly

Personalised recommendations