Systemic Lupus Erythematosus

  • Gaafar RagabEmail author
  • Carina Dehner
  • Hazem Hamza
  • Martin Kriegel


Systemic lupus erythematosus (SLE) is a debilitating and life-threatening autoimmune disease affecting major organ systems including the kidneys, brain, joints, and skin. The etiology is unknown but microorganisms, both pathogenic and commensal, are implicated in the pathogenesis of SLE. An overview of the microbiome in human lupus and animal models is given with a summary of the most recent human microbiome association studies. Next, infectious agents with a pathogenic or protective role in the pathogenesis of SLE are summarized. The majority of the chapter reviews the contribution of infectious agents to the morbidity and mortality of SLE patients with a systematic overview organized by organ system. Invasive fungal infections and other serious infections are covered separately. Biomarkers such as C-reactive protein and procalcitonin are discussed in the context of an infectious episode versus a lupus flare. The chapter closes with a brief overview of the prevention of infections in SLE patients. In summary, this chapter encompasses the role of the microbiota and infectious agents in the pathogenesis of SLE, the infectious complications in SLE patients, and its detection and differentiation from lupus flares.


Systemic lupus erythematosus Microbiome Pathogenic microorganisms Pathogenesis Risk factors for infection Clinical manifestations of infection Morbidity and mortality Prevention of infection 





Chemokine receptor 6




C-reactive protein


Cerebrospinal fluid


Childhood systemic lupus erythematosus


Cutaneous warts


End stage renal disease


Hospital-acquired infection


Hepatitis B virus


Human leukocyte antigen


Human papillomavirus


Hazard ratio


Herpes zoster infection


Infected brain lesions


Invasive fungal infection




John Cunningham virus


Latent membrane protein


Lupus nephritis




Mycophenolate mofetil


Neutrophil extracellular traps


Natural killer cells




Plasmacytoid dendritic cells


Polymorphonuclear cells


Pattern recognition receptors


Rheumatoid arthritis


Reactive oxygen species


Subacute bacterial endocarditis


Segmented filamentous bacteria


Systemic lupus erythematosus


Systemic lupus erythematosus disease activity index


Standardized mortality ratio


Standardized mortality ratios




Follicular helper T cells


Toll-like receptors


Regulatory T cells


Urinary tract infections


  1. 1.
    Mackay IR. Science, medicine, and the future: tolerance and autoimmunity. BMJ. 2000;321(7253):93–6.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Brown MA, Kenna T, Wordsworth BP. Genetics of ankylosing spondylitis—insights into pathogenesis. Nat Rev Rheumatol. 2016;12(2):81–91.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    van Drongelen V, Holoshitz J. Human leukocyte antigen-disease associations in rheumatoid arthritis. Rheum Dis Clin N Am. 2017;43(3):363–76.CrossRefGoogle Scholar
  4. 4.
    Gollwitzer ES, Marsland BJ. Impact of early-life exposures on immune maturation and susceptibility to disease. Trends Immunol. 2015;36(11):684–96.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Arrieta MC, Stiemsma LT, Amenyogbe N, et al. The intestinal microbiome in early life: health and disease. Front Immunol. 2014;5:427.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Vieira SM, Pagovich OE, Kriegel MA. Diet, microbiota and autoimmune diseases. Lupus. 2014;23(6):518–26.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Stadhouders R, Lubberts E, Hendriks RW. A cellular and molecular view of T helper 17 cell plasticity in autoimmunity. J Autoimmun. 2017;87:1–15.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Veldhoen M, Hocking RJ, Flavell RA, et al. Signals mediated by transforming growth factor-beta initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat Immunol. 2006;7(11):1151–6.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, et al. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol. 2007;8(9):942–9.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Voo KS, Wang YH, Santori FR, et al. Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci U S A. 2009;106(12):4793–8.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Lee YK, Mukasa R, Hatton RD, et al. Developmental plasticity of Th17 and Treg cells. Curr Opin Immunol. 2009;21(3):274–80.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Koenen HJ, Smeets RL, Vink PM, et al. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood. 2008;112(6):2340–52.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Johnson BM, Gaudreau MC, Al-Gadban MM, et al. Impact of dietary deviation on disease progression and gut microbiome composition in lupus-prone SNF1 mice. Clin Exp Immunol. 2015;181(2):323–37.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Palm NW, de Zoete MR, Cullen TW, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158(5):1000–10.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Scher JU, Ubeda C, Artacho A, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015;67(1):128–39.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Wang NS, McHeyzer-Williams LJ, Okitsu SL, et al. Divergent transcriptional programming of class-specific B cell memory by T-bet and RORalpha. Nat Immunol. 2012;13(6):604–11.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Hirota K, Turner JE, Villa M, et al. Plasticity of Th17 cells in Peyer's patches is responsible for the induction of T cell-dependent IgA responses. Nat Immunol. 2013;14(4):372–9.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kubinak JL, Petersen C, Stephens WZ, et al. MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health. Cell Host Microbe. 2015;17(2):153–63.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Choi JY, Ho JH, Pasoto SG, et al. Circulating follicular helper-like T cells in systemic lupus erythematosus: association with disease activity. Arthritis Rheumatol. 2015;67(4):988–99.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Hevia A, Milani C, Lopez P, et al. Intestinal dysbiosis associated with systemic lupus erythematosus. MBio. 2014;5(5):e01548–14.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Rojo D, Hevia A, Bargiela R, et al. Ranking the impact of human health disorders on gut metabolism: systemic lupus erythematosus and obesity as study cases. Sci Rep. 2015;5:8310.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Lopez P, de Paz B, Rodriguez-Carrio J, et al. Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci Rep. 2016;6:24072.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Conti F, Ceccarelli F, Iaiani G, et al. Association between Staphylococcus aureus nasal carriage and disease phenotype in patients affected by systemic lupus erythematosus. Arthritis Res Ther. 2016;18:177.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Ruff WE, Kriegel MA. Autoimmune host-microbiota interactions at barrier sites and beyond. Trends Mol Med. 2015;21(4):233–44.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Greiling TM, Dehner C, Chen X, et al. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus. Science Translational Medicine. 2018;10(434):eaan2306.Google Scholar
  27. 27.
    Kahlenberg JM, Kaplan MJ. The inflammasome and lupus: another innate immune mechanism contributing to disease pathogenesis? Curr Opin Rheumatol. 2014;26(5):475–81.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Horton CG, Farris AD. Toll-like receptors in systemic lupus erythematosus: potential targets for therapeutic intervention. Curr Allergy Asthma Rep. 2012;12(1):1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Hsieh AH, Jhou YJ, Liang CT, et al. Fragment of tegument protein pp65 of human cytomegalovirus induces autoantibodies in BALB/c mice. Arthritis Res Ther. 2011;13(5):R162.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Hod T, Zandman-Goddard G, Langevitz P, et al. Does parvovirus infection have a role in systemic lupus erythematosus? Immunol Res. 2017;65(2):447–53.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Doaty S, Agrawal H, Bauer E, et al. Infection and lupus: which causes which? Curr Rheumatol Rep. 2016;18(3):13.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Rigante D, Esposito S. Infections and systemic lupus Erythematosus: binding or sparring partners? Int J Mol Sci. 2015;16(8):17331–43.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Nelson P, Rylance P, Roden D, et al. Viruses as potential pathogenic agents in systemic lupus erythematosus. Lupus. 2014;23(6):596–605.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Sane P, Amritkar V, Pooja G. Dengue viral infection triggering abnormal immune response in a case of Kikuchi disease which later evolved into SLE. J Assoc Physicians India. 2016;64(1):147.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Soldevilla HF, Briones SF, Navarra SV. Systemic lupus erythematosus following HPV immunization or infection? Lupus. 2012;21(2):158–61.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Levy M, Bourrat E, Baudouin V, et al. Toxocara canis infection: unusual trigger of systemic lupus erythematosus. Pediatr Int. 2015;57(4):785–8.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Fattal I, Shental N, Molad Y, et al. Epstein-Barr virus antibodies mark systemic lupus erythematosus and scleroderma patients negative for anti-DNA. Immunology. 2014;141(2):276–85.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Ding Y, He X, Liao W, et al. The expression of EBV-encoded LMP1 in young patients with lupus nephritis. Int J Clin Exp Med. 2015;8(4):6073–8.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Rasmussen NS, Nielsen CT, Houen G, et al. Humoral markers of active Epstein-Barr virus infection associate with anti-extractable nuclear antigen autoantibodies and plasma galectin-3 binding protein in systemic lupus erythematosus. Lupus. 2016;25(14):1567–76.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Draborg AH, Sandhu N, Larsen N, et al. Impaired cytokine responses to Epstein-Barr virus antigens in systemic lupus Erythematosus patients. J Immunol Res. 2016;2016:6473204.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Gürtler C, Bowie AG. Innate immune detection of microbial nucleic acids. Trends Microbiol. 2013;21(8):413–20.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Fitzgerald-Bocarsly P, Feng D. The role of type I interferon production by dendritic cells in host defense. Biochimie. 2007;89(6–7):843–55.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Bengtsson AA, Ronnblom L. Role of interferons in SLE. Best Pract Res Clin Rheumatol. 2017;31(3):415–28.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Mavragani CP, Sagalovskiy I, Guo Q, et al. Expression of long interspersed nuclear element 1 Retroelements and induction of type I interferon in patients with systemic autoimmune disease. Arthritis Rheumatol. 2016;68(11):2686–96.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Manfredo Vieira S, Hiltensperger M, Kumar V, Zegarra-Ruiz D, Dehner C, Khan N, Costa FRC, Tiniakou E, Greiling T, Ruff W, Barbieri A, Kriegel C, Mehta SS, Knight JR, Jain D, Goodman AL, Kriegel MA. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science. 2018;359:1156–61.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Liu X, Jiao Y, Cui B, et al. The potential protective role of hepatitis B virus infection in pristane-induced lupus in mice. Lupus. 2016;25(11):1180–9.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Abdel-Maksoud MA, Abdel-Ghaffar FA, El-Amir A, et al. Infection with Plasmodium chabaudi diminishes plasma immune complexes and ameliorates the histopathological alterations in different organs of female BWF1 lupus mice. Eur Rev Med Pharmacol Sci. 2016;20(4):733–44.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Badr G, Sayed A, Abdel-Maksoud MA, et al. Infection of female BWF1 lupus mice with malaria parasite attenuates B cell Autoreactivity by modulating the CXCL12/CXCR4 Axis and its downstream signals PI3K/AKT, NFkappaB and ERK. PLoS One. 2015;10(4):e0125340.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Chen M, Aosai F, Norose K, et al. Toxoplasma gondii infection inhibits the development of lupus-like syndrome in autoimmune (New Zealand black × New Zealand white) F1 mice. Int Immunol. 2004;16(7):937–46.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Fischer S, Agmon-Levin N, Shapira Y, et al. Toxoplasma gondii: bystander or cofactor in rheumatoid arthritis. Immunol Res. 2013;56(2–3):287–92.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Sawalha AH, Schmid WR, Binder SR, et al. Association between systemic lupus erythematosus and helicobacter pylori seronegativity. J Rheumatol. 2004;31(8):1546.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Panda AK, Das BK. Diminished IL-17A levels may protect filarial-infected individuals from development of rheumatoid arthritis and systemic lupus erythematosus. Lupus. 2017;26(4):348–54.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Finlay BB, McFadden G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell. 2006;124(4):767–82.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Bach JF. Infections and autoimmune diseases. J Autoimmun. 2005;25:74–80.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Murdaca G, Orsi A, Spano F, et al. Vaccine-preventable infections in systemic lupus Erythematosus. Hum Vaccin Immunother. 2016;12(3):632–43.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Robak E, Niewiadomska H, Robak T, et al. Lymphocytes Tgammadelta in clinically normal skin and peripheral blood of patients with systemic lupus erythematosus and their correlation with disease activity. Mediat Inflamm. 2001;10(4):179–89.CrossRefGoogle Scholar
  57. 57.
    Volc-Platzer B, Anegg B, Milota S, et al. Accumulation of gamma delta T cells in chronic cutaneous lupus erythematosus. J Investig Dermatol. 1993;100(1):84s–91s.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Tsai CY, Wu TH, Yu CL, et al. Decreased IL-12 production by polymorphonuclear leukocytes in patients with active systemic lupus erythematosus. Immunol Investig. 2002;31(3–4):177–89.CrossRefGoogle Scholar
  59. 59.
    Truedsson L. Classical pathway deficiencies – a short analytical review. Mol Immunol. 2015;68(1):14–9.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Rupert KL, Moulds JM, Yang Y, et al. The molecular basis of complete complement C4A and C4B deficiencies in a systemic lupus Erythematosus patient with homozygous C4A and C4B mutant genes. J Immunol. 2002;169(3):1570.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Pickering MC, Botto M, Taylor PR, et al. Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv Immunol. 2000;76:227–324.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Garred P, Voss A, Madsen HO, et al. Association of mannose-binding lectin gene variation with disease severity and infections in a population-based cohort of systemic lupus erythematosus patients. Genes Immun. 2001;2(8):442–50.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Sebastiani GD, Galeazzi M. Infection—genetics relationship in systemic lupus erythematosus. Lupus. 2009;18(13):1169–75.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Marquart HV, Svendsen A, Rasmussen JM, et al. Complement receptor expression and activation of the complement cascade on B lymphocytes from patients with systemic lupus erythematosus (SLE). Clin Exp Immunol. 1995;101(1):60–5.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Park YW, Kee SJ, Cho YN, et al. Impaired differentiation and cytotoxicity of natural killer cells in systemic lupus erythematosus. Arthritis Rheum. 2009;60(6):1753–63.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Tanaka T, Saiki O, Negoro S, et al. Decreased expression of interleukin-2 binding molecules (p70/75) in T cells from patients with systemic lupus erythematosus. Arthritis Rheum. 1989;32(5):552–9.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Jin O, Kavikondala S, Sun L, et al. Systemic lupus erythematosus patients have increased number of circulating plasmacytoid dendritic cells, but decreased myeloid dendritic cells with deficient CD83 expression. Lupus. 2008;17(7):654–62.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Wu SA, Yeh KW, Lee WI, et al. Impaired phagocytosis and susceptibility to infection in pediatric-onset systemic lupus erythematosus. Lupus. 2013;22(3):279–88.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Bengtsson AA, Pettersson A, Wichert S, et al. Low production of reactive oxygen species in granulocytes is associated with organ damage in systemic lupus erythematosus. Arthritis Res Ther. 2014;16(3):R120.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Magnani A, Brosselin P, Beaute J, et al. Inflammatory manifestations in a single-center cohort of patients with chronic granulomatous disease. J Allergy Clin Immunol. 2014;134(3):655–662.e8.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    De Ravin SS, Naumann N, Cowen EW, et al. Chronic granulomatous disease as a risk factor for autoimmune disease. J Allergy Clin Immunol. 2008;122(6):1097–103.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Villanueva E, Yalavarthi S, Berthier CC, et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol. 2011;187(1):538–52.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Smith CK, Kaplan MJ. The role of neutrophils in the pathogenesis of systemic lupus erythematosus. Curr Opin Rheumatol. 2015;27(5):448–53.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Lertchaisataporn K, Kasitanon N, Wangkaew S, et al. An evaluation of the association of leukopenia and severe infection in patients with systemic lupus erythematosus. J Clin Rheumatol. 2013;19(3):115–20.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Alarcon GS. Infections in systemic connective tissue diseases: systemic lupus erythematosus, scleroderma, and polymyositis/dermatomyositis. Infect Dis Clin N Am. 2006;20(4):849–75.CrossRefGoogle Scholar
  76. 76.
    Goldstein MF, Goldstein AL, Dunsky EH, et al. Selective IgM immunodeficiency: retrospective analysis of 36 adult patients with review of the literature. Ann Allergy Asthma Immunol. 2006;97(6):717–30.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Cassidy JT, Kitson RK, Selby CL. Selective IgA deficiency in children and adults with systemic lupus erythematosus. Lupus. 2007;16(8):647–50.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Lim E, Tao Y, White AJ, et al. Hypogammaglobulinemia in pediatric systemic lupus erythematosus. Lupus. 2013;22(13):1382–7.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Chen L, Morris DL, Vyse TJ. Genetic advances in systemic lupus erythematosus: an update. Curr Opin Rheumatol. 2017;29(5):423–33.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Deng Y, Tsao BP. Advances in lupus genetics and epigenetics. Curr Opin Rheumatol. 2014;26(5):482–92.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Cui Y, Sheng Y, Zhang X. Genetic susceptibility to SLE: recent progress from GWAS. J Autoimmun. 2013;41:25–33.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Bentham J, Morris DL, Cunninghame Graham DS, et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat Genet. 2015;47:1457.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Bronson PG, Chaivorapol C, Ortmann W, et al. The genetics of type I interferon in systemic lupus erythematosus. Curr Opin Immunol. 2012;24(5):530–7.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Abelson AK, Delgado-Vega AM, Kozyrev SV, et al. STAT4 associates with systemic lupus erythematosus through two independent effects that correlate with gene expression and act additively with IRF5 to increase risk. Ann Rheum Dis. 2009;68(11):1746–53.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Zhao J, Ma J, Deng Y, et al. A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases. Nat Genet. 2017;49:433.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Olsson LM, Johansson ÅC, Gullstrand B, et al. A single nucleotide polymorphism in the NCF1 gene leading to reduced oxidative burst is associated with systemic lupus erythematosus. Ann Rheum Dis. 2017;76(9):1607–13.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Jacob CO, Eisenstein M, Dinauer MC, et al. Lupus-associated causal mutation in neutrophil cytosolic factor 2 (NCF2) brings unique insights to the structure and function of NADPH oxidase. Proc Natl Acad Sci U S A. 2012;109(2):E59–67.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Danza A, Ruiz-Irastorza G. Infection risk in systemic lupus erythematosus patients: susceptibility factors and preventive strategies. Lupus. 2013;22(12):1286–94.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Urowitz MB, Bookman AA, Koehler BE, et al. The bimodal mortality pattern of systemic lupus erythematosus. Am J Med. 1976;60(2):221–5.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Mok CC. Con: cyclophosphamide for the treatment of lupus nephritis. Nephrol Dial Transplant. 2016;31(7):1053–7.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Mills JA. Systemic lupus erythematosus. N Engl J Med. 1994;330(26):1871–9.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Feldman CH, Hiraki LT, Winkelmayer WC, et al. Serious infections among adult Medicaid beneficiaries with systemic lupus erythematosus and lupus nephritis. Arthritis Rheumatol. 2015;67(6):1577–85.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Momtaz M, Fayed A, Wadie M, et al. Retrospective analysis of nephritis response and renal outcome in a cohort of 928 Egyptian lupus nephritis patients: a university hospital experience. Lupus. 2017;26(14):1564–70.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Cervera R, Khamashta MA, Font J, et al. Morbidity and mortality in systemic lupus erythematosus during a 10-year period: a comparison of early and late manifestations in a cohort of 1,000 patients. Medicine (Baltimore). 2003;82(5):299–308.CrossRefGoogle Scholar
  95. 95.
    Mok CC, Lau CS, Chan TM, et al. Clinical characteristics and outcome of southern Chinese males with systemic lupus erythematosus. Lupus. 1999;8(3):188–96.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Srivastava P, Abujam B, Misra R, et al. Outcome of lupus nephritis in childhood onset SLE in north and Central India: single-centre experience over 25 years. Lupus. 2016;25(5):547–57.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Lin CH, Hung PH, Hu HY, et al. Infection-related hospitalization and risk of end-stage renal disease in patients with systemic lupus erythematosus: a nationwide population-based study. Nephrol Dial Transplant. 2017;32(10):1683–90.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Zhan Z, Lao M, Su F, et al. Hospital-acquired infection in patients with systemic lupus erythematosus: a case-control study in a southern Chinese population. Clin Rheumatol. 2017;37(3):709–17.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Murray SG, Schmajuk G, Trupin L, et al. National lupus hospitalization trends reveal rising rates of herpes zoster and declines in pneumocystis pneumonia. PLoS One. 2016;11(1):e0144918.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Chakravarty EF, Michaud K, Katz R, et al. Increased incidence of herpes zoster among patients with systemic lupus erythematosus. Lupus. 2013;22(3):238–44.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Borba EF, Ribeiro AC, Martin P, et al. Incidence, risk factors, and outcome of herpes zoster in systemic lupus erythematosus. J Clin Rheumatol. 2010;16(3):119–22.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Pope JE, Krizova A, Ouimet JM, et al. Close association of herpes zoster reactivation and systemic lupus erythematosus (SLE) diagnosis: case-control study of patients with SLE or noninflammatory nusculoskeletal disorders. J Rheumatol. 2004;31(2):274–9.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Manzi S, Kuller LH, Kutzer J, et al. Herpes zoster in systemic lupus erythematosus. J Rheumatol. 1995;22(7):1254–8.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Rondaan C, de Haan A, Horst G, et al. Altered cellular and humoral immunity to varicella-zoster virus in patients with autoimmune diseases. Arthritis Rheumatol. 2014;66(11):3122–8.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Houssiau FA, Vasconcelos C, D'Cruz D, et al. Immunosuppressive therapy in lupus nephritis: the euro-lupus nephritis trial, a randomized trial of low-dose versus high-dose intravenous cyclophosphamide. Arthritis Rheum. 2002;46(8):2121–31.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Rhee C, Gohil S, Klompas M. Regulatory mandates for sepsis care--reasons for caution. N Engl J Med. 2014;370(18):1673–6.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Hahn BH, McMahon MA, Wilkinson A, et al. American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res (Hoboken). 2012;64(6):797–808.CrossRefGoogle Scholar
  108. 108.
    Husain S, Singh N. The impact of novel immunosuppressive agents on infections in organ transplant recipients and the interactions of these agents with antimicrobials. Clin Infect Dis. 2002;35(1):53–61.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Oz HS, Hughes WT. Novel anti-pneumocystis carinii effects of the immunosuppressant mycophenolate mofetil in contrast to provocative effects of tacrolimus, sirolimus, and dexamethasone. J Infect Dis. 1997;175(4):901–4.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Herrinton LJ, Liu L, Goldfien R, et al. Risk of serious infection for patients with systemic lupus Erythematosus starting glucocorticoids with or without Antimalarials. J Rheumatol. 2016;43(8):1503–9.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Dubula T, Mody GM. Spectrum of infections and outcome among hospitalized South Africans with systemic lupus erythematosus. Clin Rheumatol. 2015;34(3):479–88.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Rees F, Doherty M, Grainge M, et al. Burden of comorbidity in systemic lupus Erythematosus in the UK, 1999–2012. Arthritis Care Res (Hoboken). 2016;68(6):819–27.CrossRefGoogle Scholar
  113. 113.
    Souza DC, Santo AH, Sato EI. Mortality profile related to systemic lupus erythematosus: a multiple cause-of-death analysis. J Rheumatol. 2012;39(3):496–503.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Fei Y, Shi X, Gan F, et al. Death causes and pathogens analysis of systemic lupus erythematosus during the past 26 years. Clin Rheumatol. 2014;33(1):57–63.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Ritchie J, Smyth A, Tower C, et al. Maternal deaths in women with lupus nephritis: a review of published evidence. Lupus. 2012;21(5):534–41.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Lee YH, Choi SJ, Ji JD, et al. Overall and cause-specific mortality in systemic lupus erythematosus: an updated meta-analysis. Lupus. 2016;25(7):727–34.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Chen D, Xie J, Chen H, et al. Infection in southern Chinese patients with systemic lupus erythematosus: spectrum, drug resistance, outcomes, and risk factors. J Rheumatol. 2016;43(9):1650–6.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Dixon WG, Watson K, Lunt M, et al. Rates of serious infection, including site-specific and bacterial intracellular infection, in rheumatoid arthritis patients receiving anti-tumor necrosis factor therapy: results from the British Society for Rheumatology biologics register. Arthritis Rheum. 2006;54(8):2368–76.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Shen HN, Yang HH, Lu CL. Temporal trends in characteristics and outcome of intensive care unit patients with systemic lupus erythematosus in Taiwan: a national population-based study. Lupus. 2013;22(6):644–52.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Han BK, Bhatia R, Traisak P, et al. Clinical presentations and outcomes of systemic lupus erythematosus patients with infection admitted to the intensive care unit. Lupus. 2013;22(7):690–6.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Pronk SM, van Ommen CH, Prince FH, et al. Venous thrombosis as a first sign of SLE. Ned Tijdschr Geneeskd. 2014;158:A7179.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Imamura H, Iwamoto T, Momohara S. Unusual case of an elbow mass caused by Candida arthritis in a patient with systemic lupus erythematosus. Hand Surg. 2014;19(3):409–11.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Meesiri S. Pyomyositis in a patient with systemic lupus erythematosus and a review of the literature. BMJ Case Rep. 2016.
  124. 124.
    Kim SS, Perino G, Boettner F, et al. Salmonella septic arthritis of the knees in a patient with systemic lupus erythematosus. Lupus. 2013;22(7):740–3.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Khammassi N, Kort Y. Osteonecrosis of the femoral condyles revealed by septic arthritis in systemic lupus erythematosus. Pan Afr Med J. 2015;22:94.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Ferreira JC, Marques HH, Ferriani MP, et al. Herpes zoster infection in childhood-onset systemic lupus erythematosus patients: a large multicenter study. Lupus. 2016;25(7):754–9.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Silva LM, Santos WG, Santiago MB. Prevalence of cutaneous warts in patients with systemic lupus erythematosus: a systematic review. J Infect Dev Ctries. 2016;10(9):902–6.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Lyrio LD, Grassi MF, Santana IU, et al. Prevalence of cervical human papillomavirus infection in women with systemic lupus erythematosus. Rheumatol Int. 2013;33(2):335–40.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Amaral JL, Araujo MV, Dias GA, et al. Clinical and epidemiological study of human papillomavirus infection in women with systemic lupus erythematosus in eastern Brazilian amazon. Acta Reumatol Port. 2017;42(1):47–54.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Hidalgo-Tenorio C, Jiménez-Alonso J, de Dios Luna J, et al. Urinary tract infections and lupus erythematosus. Ann Rheum Dis. 2004;63(4):431–7.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Mohamed DF, Habeeb RA, Hosny SM, et al. Incidence and risk of infection in Egyptian patients with systemic lupus erythematosus. Clin Med Insights Arthritis Musculoskelet Disord. 2014;7:41–8.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Marcos M, Fernandez C, Soriano A, et al. Epidemiology and clinical outcomes of bloodstream infections among lupus patients. Lupus. 2011;20(9):965–71.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Baronaite Hansen R, Jacobsen S. Infections increase risk of arterial and venous thromboses in Danish patients with systemic lupus erythematosus: 5102 patient-years of followup. J Rheumatol. 2014;41(9):1817–22.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Catoggio C, Alvarez-Uria A, Fernandez PL, et al. Catastrophic antiphospholipid syndrome triggered by fulminant disseminated herpes simplex infection in a patient with systemic lupus erythematosus. Lupus. 2012;21(12):1359–61.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Luijten RK, Cuppen BV, Bijlsma JW, et al. Serious infections in systemic lupus erythematosus with a focus on pneumococcal infections. Lupus. 2014;23(14):1512–6.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Xiao P, Dong C, Yue Y, et al. Dynamic expression of microRNAs in M2b polarized macrophages associated with systemic lupus erythematosus. Gene. 2014;547(2):300–9.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Pamuk ON, Pamuk GE, Barutcu E, et al. The development of pulmonary aspergillosis and pneumothorax in a patient with neutropenic systemic lupus erythematosus and successful treatment of the first case. BMJ Case Rep. 2014;2014:bcr2013200818. Scholar
  138. 138.
    Martinez-Martinez MU, Sturbaum AK, Alcocer-Varela J, et al. Factors associated with mortality and infections in patients with systemic lupus erythematosus with diffuse alveolar hemorrhage. J Rheumatol. 2014;41(8):1656–61.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Fangtham M, Magder LS, Petri MA. Oral candidiasis in systemic lupus erythematosus. Lupus. 2014;23(7):684–90.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Fawzy M, Edrees A, Okasha H, et al. Gastrointestinal manifestations in systemic lupus erythematosus. Lupus. 2016;25(13):1456–62.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Wang Q, Shen M, Leng X, et al. Prevalence, severity, and clinical features of acute and chronic pancreatitis in patients with systemic lupus erythematosus. Rheumatol Int. 2016;36(10):1413–9.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Strasser C, Wolf EM, Kornprat P, et al. Opportunistic cytomegalovirus infection causing colonic perforation in a patient with systemic lupus erythematosus. Lupus. 2012;21(4):449–51.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Tachikawa Y, Nozawa H, Tanaka J, et al. Colonic perforation in a patient with systemic lupus erythematosus accompanied by cytomegalovirus infection: a case report. Int J Surg Case Rep. 2016;23:70–3.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Mahroum N, Hejly A, Tiosano S, et al. Chronic hepatitis C viral infection among SLE patients: the significance of coexistence. Immunol Res. 2017;65(2):477–81.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Xu Y, Xu D, Zhang T, et al. The prevalence and clinical characteristics of systemic lupus erythematosus with infectious brain lesions in China. Scand J Rheumatol. 2012;41(6):466–71.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Berntsson SG, Katsarogiannis E, Lourenco F, et al. Progressive multifocal leukoencephalopathy and systemic lupus erythematosus: focus on etiology. Case Rep Neurol. 2016;8(1):59–65.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Williamson EML, Berger JR. Diagnosis and treatment of progressive multifocal Leukoencephalopathy associated with multiple sclerosis therapies. Neurotherapeutics. 2017;14(4):961–73.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Mekitarian Filho E, Horita SM, Gilio AE, et al. Cerebrospinal fluid lactate level as a diagnostic biomarker for bacterial meningitis in children. Int J Emerg Med. 2014;7(1):14.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Huy NT, Thao NT, Diep DT, et al. Cerebrospinal fluid lactate concentration to distinguish bacterial from aseptic meningitis: a systemic review and meta-analysis. Crit Care. 2010;14(6):R240.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Zhong Y, Li M, Liu J, et al. Cryptococcal meningitis in Chinese patients with systemic lupus erythematosus. Clin Neurol Neurosurg. 2015;131:59–63.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Zheng H, Li M, Wang D, et al. Gender-specific contributing risk factors and outcome of female cryptococcal meningoencephalitis patients. BMC Infect Dis. 2016;16:22.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    de Araujo DB, Daolio L, Szajubok JC, et al. Epidural abscess due to Salmonella enteritidis in a patient with systemic lupus erythematosus. Lupus. 2012;21(12):1356–8.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Freire PS, Montoni JD, Ribeiro AS, et al. Miliary tuberculosis: a severe opportunistic infection in juvenile systemic lupus erythematosus patients. Rev Bras Reumatol Engl Ed. 2016;56(3):274–9.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Berman N, Belmont HM. Disseminated cytomegalovirus infection complicating active treatment of systemic lupus erythematosus: an emerging problem. Lupus. 2017;26(4):431–4.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Vinicki JP, Catalan Pellet S, Pappalardo C, et al. Invasive fungal infections in argentine patients with systemic lupus erythematosus. Lupus. 2013;22(9):892–8.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Silva MF, Ferriani MP, Terreri MT, et al. A multicenter study of invasive fungal infections in patients with childhood-onset systemic lupus erythematosus. J Rheumatol. 2015;42(12):2296–303.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Martinez-Martinez MU, Herrera-Van Oostdam D, Roman-Acosta S, et al. Invasive fungal infections in patients with systemic lupus erythematosus. J Rheumatol. 2012;39(9):1814–8.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Chen GL, Chen Y, Zhu CQ, et al. Invasive fungal infection in Chinese patients with systemic lupus erythematosus. Clin Rheumatol. 2012;31(7):1087–91.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Chung SA, Brown EE, Williams AH, et al. Lupus nephritis susceptibility loci in women with systemic lupus erythematosus. J Am Soc Nephrol. 2014;25(12):2859–70.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Firooz N, Albert DA, Wallace DJ, et al. High-sensitivity C-reactive protein and erythrocyte sedimentation rate in systemic lupus erythematosus. Lupus. 2011;20(6):588–97.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Ospina FE, Echeverri A, Zambrano D, et al. Distinguishing infections vs flares in patients with systemic lupus erythematosus. Rheumatology (Oxford). 2017;56(suppl_1):i46–54.Google Scholar
  162. 162.
    Song GG, Bae SC, Lee YH. Diagnostic accuracies of procalcitonin and C-reactive protein for bacterial infection in patients with systemic rheumatic diseases: a meta-analysis. Clin Exp Rheumatol. 2015;33(2):166–73.PubMedPubMedCentralGoogle Scholar
  163. 163.
    Bador KM, Intan S, Hussin S, et al. Serum procalcitonin has negative predictive value for bacterial infection in active systemic lupus erythematosus. Lupus. 2012;21(11):1172–7.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Serio I, Arnaud L, Mathian A, et al. Can procalcitonin be used to distinguish between disease flare and infection in patients with systemic lupus erythematosus: a systematic literature review. Clin Rheumatol. 2014;33(9):1209–15.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Dima A, Opris D, Jurcut C, et al. Is there still a place for erythrocyte sedimentation rate and C-reactive protein in systemic lupus erythematosus? Lupus. 2016;25(11):1173–9.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Pyo JY, Park JS, Park YB, et al. Delta neutrophil index as a marker for differential diagnosis between flare and infection in febrile systemic lupus erythematosus patients. Lupus. 2013;22(11):1102–9.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Liu J, Pan Y, Tang LJ, et al. Low adenosine triphosphate activity in CD4+ cells predicts infection in patients with lupus nephritis. Clin Exp Rheumatol. 2014;32(3):383–9.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Chen CH, Tai SB, Chen HC, et al. Analysis of erythrocyte C4d to complement receptor 1 ratio: use in distinguishing between infection and flare-up in febrile patients with systemic lupus Erythematosus. Biomed Res Int. 2015;2015:939783.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Sciascia S, Cuadrado MJ, Karim MY. Management of infection in systemic lupus erythematosus. Best Pract Res Clin Rheumatol. 2013;27(3):377–89.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Grein IH, Groot N, Lacerda MI, et al. HPV infection and vaccination in systemic lupus Erythematosus patients: what we really should know. Pediatr Rheumatol Online J. 2016;14(1):12.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Mathian A, Arnaud L, Adoue D, et al. Prevention of infections in adults and adolescents with systemic lupus erythematosus: guidelines for the clinical practice based on the literature and expert opinion. Rev Med Interne. 2016;37(5):307–20.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Liao Z, Tang H, Xu X, et al. Immunogenicity and safety of influenza vaccination in systemic lupus Erythematosus patients compared with healthy controls: a meta-analysis. PLoS One. 2016;11(2):e0147856.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Watanabe R, Ishii T, Harigae H. Pretreatment screening for hepatitis B virus infection in patients with systemic lupus erythematosus. Tohoku J Exp Med. 2015;237(1):9–15.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gaafar Ragab
    • 1
    Email author
  • Carina Dehner
    • 2
  • Hazem Hamza
    • 3
    • 4
  • Martin Kriegel
    • 5
  1. 1.Rheumatology and Clinical Immunology Unit, Department of Internal Medicine, Faculty of MedicineCairo UniversityCairoEgypt
  2. 2.Department of ImmunobiologyYale School of MedicineNew HavenUSA
  3. 3.Virology LaboratoryNational Research CentreCairoEgypt
  4. 4.Department of ImmunologyInterfaculty Institute of Cell Biology, Eberhard Karls University TübingenTübingenGermany
  5. 5.Department of ImmunobiologyYale School of MedicineNew HavenUSA

Personalised recommendations