Psoriasis and Psoriatic Arthritis

  • Madhura CastelinoEmail author
  • Steve Eyre
  • Anne Barton


In complex inflammatory diseases such as psoriasis vulgaris (PsV) and psoriatic arthritis (PsA), interplay between genetic and environmental factors is considered important in the pathogenesis of disease. Among the non-genetic risk factors, there is evidence for the influence of microbial elements in the pathogenesis of PsV and PsA. In both conditions, there is the potential for breach of barriers at sites of host-environment interfaces, such as the skin and mucosal surfaces of the gastrointestinal tract, due to the presence of inflammatory lesions (psoriatic plaques and gut mucosal inflammation). Such a breach could contribute to increased interaction with exogenous antigens including the microbiota and, on the background of increased susceptibility to a dysregulated immune reaction due to genetic predisposition, could result in the onset and maintenance of disease pathology. There is increasing evidence of bacterial dysbiosis in psoriatic plaques. In addition, dysbiosis similar to that observed in inflammatory bowel disease (IBD) has been reported in studies of the gut microbiota from PsV and PsA individuals. Further studies into the microbial composition and their interaction with both the host genotype and immunophenotype should help dissect the links between the skin-gut-joint axis and provide novel therapeutic targets for disease prevention and control.


Microbiota Psoriatic arthritis Psoriasis 



Antimicrobial peptide


Ankylosing spondylitis


Enteropathic arthritis


Human beta-defensin


Human immunodeficiency virus


Human leukocyte antigen


Inflammatory bowel disease




Psoriatic arthritis


Psoriasis vulgaris


Rheumatoid arthritis


Reactive arthritis




Toll-like receptor


Undifferentiated spondyloarthritis


  1. 1.
    Fry L. Psoriasis. Br J Dermatol. 1988;119(4):445–61.CrossRefPubMedGoogle Scholar
  2. 2.
    O’Neill T, Silman AJ. Psoriatic arthritis. Historical background and epidemiology. Baillieres Clin Rheumatol. 1994;8(2):245–61.CrossRefPubMedGoogle Scholar
  3. 3.
    Reed WB. Psoriatic arthritis. A complete clinical study of 86 patients. Acta Derm Venereol. 1961;41:396–403.PubMedGoogle Scholar
  4. 4.
    Moll JM, Wright V. Psoriatic arthritis. Semin Arthritis Rheum. 1973;3:55–78.CrossRefPubMedGoogle Scholar
  5. 5.
    Taylor W, Gladman D, Helliwell P, Marchesoni A, Mease P, Mielants H. Classification criteria for psoriatic arthritis: development of new criteria from a large international study. Arthritis Rheum. 2006;54(8):2665–73.CrossRefPubMedGoogle Scholar
  6. 6.
    Collins FS, Morgan M, Patrinos A. The human genome project: lessons from large-scale biology. Science. 2003;300(5617):286–90.CrossRefPubMedGoogle Scholar
  7. 7.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.CrossRefPubMedGoogle Scholar
  8. 8.
    Gladman DD. Clinical, radiological, and functional assessment in psoriatic arthritis: is it different from other inflammatory joint diseases? Ann Rheum Dis. 2006;65(Suppl 3):iii22–4.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Helliwell PS, Hickling P, Wright V. Do the radiological changes of classic ankylosing spondylitis differ from the changes found in the spondylitis associated with inflammatory bowel disease, psoriasis, and reactive arthritis? Ann Rheum Dis. 1998;57(3):135–40.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kruithof E, Baeten D, De Rycke L, Vandooren B, Foell D, Roth J, et al. Synovial histopathology of psoriatic arthritis, both oligo- and polyarticular, resembles spondyloarthropathy more than it does rheumatoid arthritis. Arthritis Res Ther. 2005;7(3):R569–80.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Griffiths CEM, Barker JN. Pathogenesis and clinical features of psoriasis. Lancet. 2007;370(9583):263–71.CrossRefPubMedGoogle Scholar
  12. 12.
    Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med. 2009;361(5):496–509.CrossRefPubMedGoogle Scholar
  13. 13.
    Reece RJ, Canete JD, Parsons WJ, Emery P, Veale DJ. Distinct vascular patterns of early synovitis in psoriatic, reactive, and rheumatoid arthritis. Arthritis Rheum. 1999;42(7):1481–4.CrossRefPubMedGoogle Scholar
  14. 14.
    Levine JS, Burakoff R. Extraintestinal manifestations of inflammatory bowel disease. Gastroenterol Hepatol. 2011;7(4):235–41.Google Scholar
  15. 15.
    Lindqvist U, Kristjansson G, Pihl-Lundin I, Hagforsen E, Michaelsson G. Patients with psoriatic arthritis have an increased number of lymphocytes in the duodenal mucosa in comparison with patients with psoriasis vulgaris. J Rheumatol. 2006;33(5):924–7.PubMedGoogle Scholar
  16. 16.
    Scarpa R, Manguso F, D’Arienzo A, D’Armiento FP, Astarita C, Mazzacca G, et al. Microscopic inflammatory changes in colon of patients with both active psoriasis and psoriatic arthritis without bowel symptoms. J Rheumatol. 2000;27(5):1241–6.PubMedGoogle Scholar
  17. 17.
    Hannu T. Reactive arthritis. Best Pract Res Clin Rheumatol. 2011;25(3):347–57.CrossRefPubMedGoogle Scholar
  18. 18.
    Telfer NR, Chalmers RJ, Whale K, Colman G. The role of streptococcal infection in the initiation of guttate psoriasis. Arch Dermatol. 1992;128(1):39–42.CrossRefPubMedGoogle Scholar
  19. 19.
    Luxembourg A, Cailla H, Roux H, Roudier J. Do viruses play an etiologic role in ankylosing spondylitis or psoriatic arthritis? Clin Immunol Immunopathol. 1987;45(2):292–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Palazzi C, Olivieri I, D’Amico E, D’Agostino L, Nicolucci A, Pennese E, et al. Hepatitis C virus infection in psoriatic arthritis. Arthritis Rheum. 2005;53(2):223–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Taglione E, Vatteroni ML, Martini P, Galluzzo E, Lombardini F, Delle SA, et al. Hepatitis C virus infection: prevalence in psoriasis and psoriatic arthritis. J Rheumatol. 1999;26(2):370–2.PubMedGoogle Scholar
  22. 22.
    Rahman MU, Ahmed S, Schumacher HR, Zeiger AR. High levels of antipeptidoglycan antibodies in psoriatic and other seronegative arthritides. J Rheumatol. 1990;17(5):621–5.PubMedGoogle Scholar
  23. 23.
    Rantakokko K, Rimpilainen M, Uksila J, Jansen C, Luukkainen R, Toivanen P. Antibodies to streptococcal cell wall in psoriatic arthritis and cutaneous psoriasis. Clin Exp Rheumatol. 1997;15(4):399–404.PubMedGoogle Scholar
  24. 24.
    Vasey FB, Deitz C, Fenske NA, Germain BF, Espinoza LR. Possible involvement of group A streptococci in the pathogenesis of psoriatic arthritis. J Rheumatol. 1982;9(5):719–22.PubMedGoogle Scholar
  25. 25.
    Njobvu P, McGill P. Psoriatic arthritis and human immunodeficiency virus infection in Zambia. J Rheumatol. 2000;27(7):1699–702.PubMedGoogle Scholar
  26. 26.
    Eder L, Law T, Chandran V, Shanmugarajah S, Shen H, Rosen CF, et al. Association between environmental factors and onset of psoriatic arthritis in patients with psoriasis. Arthritis Care Res (Hoboken). 2011;63(8):1091–7.CrossRefGoogle Scholar
  27. 27.
    Pattison E, Harrison BJ, Griffiths CEM, Silman AJ, Bruce IN. Environmental risk factors for the development of psoriatic arthritis: results from a case-control study. Ann Rheum Dis. 2008;67(5):672–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Bowes J, Budu-Aggrey A, Huffmeier U, Uebe S, Steel K, Hebert HL, et al. Dense genotyping of immune-related susceptibility loci reveals new insights into the genetics of psoriatic arthritis. Nat Commun. 2015;6:6046.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Eder L, Chandran V, Pellet F, Shanmugarajah S, Rosen CF, Bull SB, et al. Human leucocyte antigen risk alleles for psoriatic arthritis among patients with psoriasis. Ann Rheum Dis. 2012;71(1):50–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Fitzgerald O, Haroon M, Giles JT, Winchester R. Concepts of pathogenesis in psoriatic arthritis: genotype determines clinical phenotype. Arthritis Res Ther. 2015;17:115.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Okada Y, Han B, Tsoi LC, Stuart PE, Ellinghaus E, Tejasvi T, et al. Fine mapping major histocompatibility complex associations in psoriasis and its clinical subtypes. Am J Hum Genet. 2014;95(2):162–72.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Winchester R, Minevich G, Steshenko V, Kirby B, Kane D, Greenberg DA, et al. HLA associations reveal genetic heterogeneity in psoriatic arthritis and in the psoriasis phenotype. Arthritis Rheum. 2012;64(4):1134–44.CrossRefPubMedGoogle Scholar
  33. 33.
    Sobao Y, Tsuchiya N, Takiguchi M, Tokunaga K. Overlapping peptide-binding specificities of HLA-B27 and B39: evidence for a role of peptide supermotif in the pathogenesis of spondylarthropathies. Arthritis Rheum. 1999;42(1):175–81.CrossRefPubMedGoogle Scholar
  34. 34.
    McFadden J, Valdimarsson H, Fry L. Cross-reactivity between streptococcal M surface antigen and human skin. Br J Dermatol. 1991;125(5):443–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Baker BS, Powles A, Fry L. Peptidoglycan: a major aetiological factor for psoriasis? Trends Immunol. 2006;27(12):545–51.CrossRefPubMedGoogle Scholar
  36. 36.
    Cai YH, Lu ZY, Shi RF, Xue F, Chen XY, Pan M, et al. Enhanced proliferation and activation of peripheral blood mononuclear cells in patients with psoriasis vulgaris mediated by streptococcal antigen with bacterial DNA. J Invest Dermatol. 2009;129(11):2653–60.CrossRefPubMedGoogle Scholar
  37. 37.
    Tinazzi I, Adami S, Zanolin EM, Caimmi C, Confente S, Girolomoni G, et al. The early psoriatic arthritis screening questionnaire: a simple and fast method for the identification of arthritis in patients with psoriasis. Rheumatology (Oxford). 2012;51(11):2058–63.CrossRefGoogle Scholar
  38. 38.
    Duvic M. Immunology of AIDS related to psoriasis. J Invest Dermatol. 1990;95(5 Suppl):38S–40S.CrossRefPubMedGoogle Scholar
  39. 39.
    Fuchs D, Hausen A, Reibnegger G, Werner ER, Werner-Felmayer G, Dierich MP, et al. Interferon-gamma concentrations are increased in sera from individuals infected with human immunodeficiency virus type 1. J Acquir Immune Defic Syndr. 1989;2(2):158–62.PubMedGoogle Scholar
  40. 40.
    Silvestris F, Williams RC Jr, Dammacco F. Autoreactivity in HIV-1 infection: the role of molecular mimicry. Clin Immunol Immunopathol. 1995;75(3):197–205.CrossRefPubMedGoogle Scholar
  41. 41.
    Torres BA, Johnson HM. Identification of an HIV-1 Nef peptide that binds to HLA class II antigens. Biochem Biophys Res Commun. 1994;200(2):1059–65.CrossRefPubMedGoogle Scholar
  42. 42.
    Ndhlovu LC, Chapman JM, Jha AR, Snyder-Cappione JE, Pagan M, Leal FE, et al. Suppression of HIV-1 plasma viral load below detection preserves IL-17 producing T cells in HIV-1 infection. AIDS. 2008;22(8):990–2.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Costello P, Bresnihan B, O’Farrelly C, Fitzgerald O. Predominance of CD8+ T lymphocytes in psoriatic arthritis. J Rheumatol. 1999;26(5):1117–24.PubMedGoogle Scholar
  44. 44.
    Menon B, Gullick NJ, Walter GJ, Rajasekhar M, Garrood T, Evans HG, et al. Interleukin-17+CD8+ T cells are enriched in the joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression. Arthritis Rheumatol. 2014;66(5):1272–81.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Huffmeier U, Uebe S, Ekici AB, Bowes J, Giardina E, Korendowych E, et al. Common variants at TRAF3IP2 are associated with susceptibility to psoriatic arthritis and psoriasis. Nat Genet. 2010;42(11):996–9.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Liu Y, Helms C, Liao W, Zaba LC, Duan S, Gardner J, et al. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet. 2008;4(3):e1000041.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Stuart PE, Nair RP, Ellinghaus E, Ding J, Tejasvi T, Gudjonsson JE, et al. Genome-wide association analysis identifies three psoriasis susceptibility loci. Nat Genet. 2010;42:1000–4.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–73.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313–23.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke JD, Serino M, et al. Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:189.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lam YY, Ha CW, Campbell CR, Mitchell AJ, Dinudom A, Oscarsson J, et al. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS One. 2012;7(3):e34233.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Nakatsuji T, Chiang HI, Jiang SB, Nagarajan H, Zengler K, Gallo RL. The microbiome extends to subepidermal compartments of normal skin. Nat Commun. 2013;4:1431.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Bowes J, Flynn E, Ho P, Aly B, Morgan AW, Marzo-Ortega H, et al. Variants in linkage disequilibrium with the late cornified envelope gene cluster deletion are associated with susceptibility to psoriatic arthritis. Ann Rheum Dis. 2010;69(12):2199–203.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    de Cid CR, Riveira-Munoz E, Zeeuwen PL, Robarge J, Liao W, Dannhauser EN, et al. Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis. Nat Genet. 2009;41(2):211–5.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Smith RL, Hebert HL, Massey J, Bowes J, Marzo-Ortega H, Ho P, et al. Association of Toll-like receptor 4 (TLR4) with chronic plaque type psoriasis and psoriatic arthritis. Arch Dermatol Res. 2016;308(3):201–5.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lande R, Botti E, Jandus C, Dojcinovic D, Fanelli G, Conrad C, et al. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Commun. 2014;5:5621.CrossRefPubMedGoogle Scholar
  58. 58.
    Cohen AD, Dreiher J, Birkenfeld S. Psoriasis associated with ulcerative colitis and Crohn’s disease. J Eur Acad Dermatol Venereol. 2009;23(5):561–5.CrossRefPubMedGoogle Scholar
  59. 59.
    Schatteman L, Mielants H, Veys EM, Cuvelier C, De Vos M, Gyselbrecht L, et al. Gut inflammation in psoriatic arthritis: a prospective ileocolonoscopic study. J Rheumatol. 1995;22(4):680–3.PubMedGoogle Scholar
  60. 60.
    Egeberg A, Mallbris L, Warren RB, Bachelez H, Gislason GH, Hansen PR, et al. Association between psoriasis and inflammatory bowel disease: a Danish nationwide cohort study. Br J Dermatol. 2016;175(3):487–92.CrossRefPubMedGoogle Scholar
  61. 61.
    Bernstein CN, Wajda A, Blanchard JF. The clustering of other chronic inflammatory diseases in inflammatory bowel disease: a population-based study. Gastroenterology. 2005;129(3):827–36.CrossRefPubMedGoogle Scholar
  62. 62.
    Christophers E. Comorbidities in psoriasis. Clin Dermatol. 2007;25(6):529–34.CrossRefPubMedGoogle Scholar
  63. 63.
    Lee FI, Bellary SV, Francis C. Increased occurrence of psoriasis in patients with Crohn’s disease and their relatives. Am J Gastroenterol. 1990;85(8):962–3.PubMedGoogle Scholar
  64. 64.
    Li WQ, Han JL, Chan AT, Qureshi AA. Psoriasis, psoriatic arthritis and increased risk of incident Crohn’s disease in US women. Ann Rheum Dis. 2013;72(7):1200–5.CrossRefPubMedGoogle Scholar
  65. 65.
    Streilein JW. Skin-associated lymphoid tissues (SALT): origins and functions. J Invest Dermatol. 1983;80(Suppl):12s–6s.CrossRefPubMedGoogle Scholar
  66. 66.
    Bouskra D, Brezillon C, Berard M, Werts C, Varona R, Boneca IG, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature. 2008;456(7221):507–10.CrossRefPubMedGoogle Scholar
  67. 67.
    Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, et al. Compartmentalized control of skin immunity by resident commensals. Science. 2012;337(6098):1115–9.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Zakostelska Z, Malkova J, Klimesova K, Rossmann P, Hornova M, Novosadova I, et al. Intestinal microbiota promotes psoriasis-like skin inflammation by enhancing Th17 response. PLoS One. 2016;11(7):e0159539.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Teng F, Klinger CN, Felix KM, Bradley CP, Wu E, Tran NL, et al. Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer’s patch T follicular helper cells. Immunity. 2016;44(4):875–88.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;498(7454):367–70.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Paulino LC, Tseng CH, Strober BE, Blaser MJ. Molecular analysis of fungal microbiota in samples from healthy human skin and psoriatic lesions. J Clin Microbiol. 2006;44(8):2933–41.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Gao Z, Tseng CH, Strober BE, Pei Z, Blaser MJ. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One. 2008;3:e2719.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Fahlen A, Engstrand L, Baker BS, Powles A, Fry L. Comparison of bacterial microbiota in skin biopsies from normal and psoriatic skin. Arch Dermatol Res. 2011;304(1):15–22.CrossRefPubMedGoogle Scholar
  75. 75.
    Alekseyenko AV, Perez-Perez GI, De Souza A, Strober B, Gao Z, Bihan M, et al. Community differentiation of the cutaneous microbiota in psoriasis. Microbiome. 2013;1(1):31.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Takemoto A, Cho O, Morohoshi Y, Sugita T, Muto M. Molecular characterization of the skin fungal microbiome in patients with psoriasis. J Dermatol. 2015;42(2):166–70.CrossRefPubMedGoogle Scholar
  77. 77.
    Drago L, De GR, Altomare G, Pigatto P, Rossi O, Toscano M. Skin microbiota of first cousins affected by psoriasis and atopic dermatitis. Clin Mol Allergy. 2016;14:2.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Tett A, Pasolli E, Farina S, Truong DT, Asnicar F, Zolfo M, et al. Unexplored diversity and strain-level structure of the skin microbiome associated with psoriasis. NPJ Biofilms Microbiomes. 2017;3:14.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Eppinga H, Sperna Weiland CJ, Thio HB, van der Woude CJ, Nijsten TE, Peppelenbosch MP, et al. Similar depletion of protective Faecalibacterium prausnitzii in psoriasis and inflammatory bowel disease, but not in hidradenitis suppurativa. J Crohns Colitis. 2016;10(9):1067–75.CrossRefPubMedGoogle Scholar
  80. 80.
    Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015;67(1):128–39.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Bassaganya-Riera J, Viladomiu M, Pedragosa M, De SC, Carbo A, Shaykhutdinov R, et al. Probiotic bacteria produce conjugated linoleic acid locally in the gut that targets macrophage PPAR gamma to suppress colitis. PLoS One. 2012;7(2):e31238.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Cogen AL, Nizet V, Gallo RL. Skin microbiota: a source of disease or defence? Br J Dermatol. 2008;158:442–55.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Rheumatology, NIHR Manchester Musculoskeletal Biomedical Research UnitThe University of ManchesterManchesterUK
  2. 2.Division of Musculoskeletal and Dermatological SciencesThe University of ManchesterManchesterUK

Personalised recommendations