Juvenile Idiopathic Arthritis

  • Miika ArvonenEmail author
  • Matthew L. Stoll


Juvenile idiopathic arthritis (JIA) is defined as a chronic arthritis of unknown origin beginning before 16 years of age (Petty et al., J Rheumatol 31:390–2, 2004). It is not a single disease but a heterogeneous collection of conditions involving a spectrum of clinical findings (Martini and Lovell, Ann Rheum Dis 69:1260–3, 2010). A genome-wide study indicated that approximately one fifth of JIA pathogenesis could be accounted for genetic predisposition (Hinks et al., Nat Genet 45:664–9, 2013), indicating a substantial role for environmental factors. One group of environmental factors in particular that has been gaining increasing attention over the last decade is microbial agents. Indeed, many environmental factors associated with JIA, such as mode of delivery, breastfeeding, and exposure to antibiotics, may act through altering the colonization of the microbiota and consequently the maturation of the immune response (Koenig et al., Proc Natl Acad Sci U S A 108(Suppl 1):4578–85, 2011; Bates et al., Dev Biol 297:374–86, 2006; Hooper et al., Science 291:881–4, 2001). Recent methodological advances have made it possible to investigate the taxonomic and functional alteration of the microbiota in JIA and thus begin to explore how we may begin to use this information to prevent or treat disease.


Juvenile idiopathic arthritis Enthesitis-related arthritis Microbiota Infection 



Antinuclear antibody


Cyclic citrullinated peptide antibody


Epstein-Barr virus


Exclusive enteral nutrition


Enthesitis-related arthritis


Fecal microbiota transplantation


Human leukocyte antigen


Juvenile arthritis disease activity score


Post-streptococcal reactive arthritis


Reactive arthritis




  1. 1.
    Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J, et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol. 2004;31:390–2.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Martini A, Lovell DJ. Juvenile idiopathic arthritis: state of the art and future perspectives. Ann Rheum Dis. 2010;69:1260–3.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Hinks A, Cobb J, Marion MC, Prahalad S, Sudman M, Bowes J, et al. Dense genotyping of immune-related disease regions identifies 14 new susceptibility loci for juvenile idiopathic arthritis. Nat Genet. 2013;45:664–9.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Nordal E, Zak M, Aalto K, Berntson L, Fasth A, Herlin T, et al. Ongoing disease activity and changing categories in a long-term nordic cohort study of juvenile idiopathic arthritis. Arthritis Rheum. 2011;63:2809–18.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    van Rossum M, van Soesbergen R, de Kort S, ten Cate R, Zwinderman AH, de Jong B, et al. Anti-cyclic citrullinated peptide (anti-CCP) antibodies in children with juvenile idiopathic arthritis. J Rheumatol. 2003;30:825–8.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Lin YT, Wang CT, Gershwin ME, Chiang BL. The pathogenesis of oligoarticular/polyarticular vs systemic juvenile idiopathic arthritis. Autoimmun Rev. 2011;10:482–9.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Prakken B, Albani S, Martini A. Juvenile idiopathic arthritis. Lancet. 2011;377:2138–49.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Vatanen T, Kostic AD, d’Hennezel E, Siljander H, Franzosa EA, Yassour M, et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell. 2016;165:842–53.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Gosalbes MJ, Llop S, Valles Y, Moya A, Ballester F, Francino MP. Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin Exp Allergy. 2013;43:198–211.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Berkun Y, Lewy H, Padeh S, Laron Z. Seasonality of birth of patients with juvenile idiopathic arthritis. Clin Exp Rheumatol. 2015;33:122–6.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Pritchard MH, Matthews N, Munro J. Antibodies to influenza A in a cluster of children with juvenile chronic arthritis. Br J Rheumatol. 1988;27:176–80.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4578–85.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Bates JM, Mittge E, Kuhlman J, Baden KN, Cheesman SE, Guillemin K. Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev Biol. 2006;297:374–86.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science. 2001;291:881–4.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Carlens C, Jacobsson L, Brandt L, Cnattingius S, Stephansson O, Askling J. Perinatal characteristics, early life infections and later risk of rheumatoid arthritis and juvenile idiopathic arthritis. Ann Rheum Dis. 2009;68:1159–64.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Kristensen K, Henriksen L. Cesarean section and disease associated with immune function. J Allergy Clin Immunol. 2016;137:587–90.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Cho CE, Norman M. Cesarean section and development of the immune system in the offspring. Am J Obstet Gynecol. 2013;208:249–54.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Rautava S, Luoto R, Salminen S, Isolauri E. Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol. 2012;9:565–76.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Biasucci G, Rubini M, Riboni S, Morelli L, Bessi E, Retetangos C. Mode of delivery affects the bacterial community in the newborn gut. Early Hum Dev. 2010;86(Suppl 1):13–5.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut. 2014;63:559–66.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: a systematic review. BMC Gastroenterol. 2016;16:86.,016-0498-0.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chu D, Ma J, Prince A, Antony K, Seferovic M, Aagaard K. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017;23:314–28.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Huurre A, Kalliomaki M, Rautava S, Rinne M, Salminen S, Isolauri E. Mode of delivery – effects on gut microbiota and humoral immunity. Neonatology. 2008;93:236–40.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Salminen S, Gibson GR, McCartney AL, Isolauri E. Influence of mode of delivery on gut microbiota composition in seven year old children. Gut. 2004;53(9):1388.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107:11971–5.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Mason T, Rabinovich CE, Fredrickson DD, Amoroso K, Reed AM, Stein LD, et al. Breast feeding and the development of juvenile rheumatoid arthritis. J Rheumatol. 1995;22:1166–70.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Kasapcopur O, Tasdan Y, Apelyan M, Akkus S, Caliskan S, Sever L, et al. Does breast feeding prevent the development of juvenile rheumatoid arthritis? J Rheumatol. 1998;25:2286–7.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Rosenberg AM. Evaluation of associations between breast feeding and subsequent development of juvenile rheumatoid arthritis. J Rheumatol. 1996;23:1080–2.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Hyrich KL, Baildam E, Pickford H, Chieng A, Davidson JE, Foster H, et al. Influence of past breast feeding on pattern and severity of presentation of juvenile idiopathic arthritis. Arch Dis Child. 2016;101:348–51.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Montoya J, Matta NB, Suchon P, Guzian MC, Lambert NC, Mattei JP, et al. Patients with ankylosing spondylitis have been breast fed less often than healthy controls: a case-control retrospective study. Ann Rheum Dis. 2016;75:879–82.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kindgren E, Fredrikson M, Ludvigsson J. Early feeding and risk of Juvenile idiopathic arthritis: a case control study in a prospective birth cohort. Pediatr Rheumatol Online J. 2017;15:46,017-0175-z.CrossRefGoogle Scholar
  32. 32.
    Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, et al. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr. 2000;30:61–7.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Perez PF, Dore J, Leclerc M, Levenez F, Benyacoub J, Serrant P, et al. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics. 2007;119:e724–32.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Stoll ML, Kumar R, Morrow CD, Lefkowitz EJ, Cui X, Genin A, et al. Altered microbiota associated with abnormal humoral immune responses to commensal organisms in enthesitis-related arthritis. Arthritis Res Ther. 2014;16:486,014-0486-0.CrossRefGoogle Scholar
  35. 35.
    Wallis D, Asaduzzaman A, Weisman M, Haroon N, Anton A, McGovern D, et al. Elevated serum anti-flagellin antibodies implicate subclinical bowel inflammation in ankylosing spondylitis: an observational study. Arthritis Res Ther. 2013;15:R166.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ravelli A, Felici E, Magni-Manzoni S, Pistorio A, Novarini C, Bozzola E, et al. Patients with antinuclear antibody-positive juvenile idiopathic arthritis constitute a homogeneous subgroup irrespective of the course of joint disease. Arthritis Rheum. 2005;52:826–32.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Van Praet JT, Donovan E, Vanassche I, Drennan MB, Windels F, Dendooven A, et al. Commensal microbiota influence systemic autoimmune responses. EMBO J. 2015;34:466–74.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Van Dijkhuizen P, Del Chierico F, Malattia C, Russo A, Marafon DP, ter Haar NM, et al. The composition of the gut microbiota differs between children with JIA and healthy controls. 2016.Google Scholar
  39. 39.
    Korpela K, Salonen A, Virta LJ, Kekkonen RA, de Vos WM. Association of early-life antibiotic use and protective effects of breastfeeding: role of the intestinal microbiota. JAMA Pediatr. 2016;170:750–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Horton DB, Scott FI, Haynes K, Putt ME, Rose CD, Lewis JD, et al. Antibiotic exposure and juvenile idiopathic arthritis: a case-control study. Pediatrics. 2015;136:e333–43.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Arvonen M, Virta LJ, Pokka T, Kroger L, Vahasalo P. Repeated exposure to antibiotics in infancy: a predisposing factor for juvenile idiopathic arthritis or a sign of this group’s greater susceptibility to infections? J Rheumatol. 2015;42(3):521–6.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Arvonen M, Berntson L, Pokka T, Karttunen TJ, Vahasalo P, Stoll ML. Gut microbiota-host interactions and juvenile idiopathic arthritis. Pediatr Rheumatol Online J. 2016;14:44,016-0104-6.CrossRefGoogle Scholar
  43. 43.
    Panda S, El khader I, Casellas F, Lopez Vivancos J, Garcia Cors M, Santiago A, et al. Short-term effect of antibiotics on human gut microbiota. PLoS One. 2014;9:e95476.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Jernberg C, Lofmark S, Edlund C, Jansson JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007;1:56–66.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Di Paola M, Cavalieri D, Albanese D, Sordo M, Pindo M, Donati C, et al. Alteration of fecal microbiota profiles in juvenile idiopathic arthritis. Associations with HLA-B27 allele and disease status. Front Microbiol. 2016;7:1703.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Malievskiy V. Prevalence and incidence of juvenile idiopathic arthritis in children in the republic of Bashkortostan: the epidemiological study. Pediatr Rheumatol. 2011;9(Suppl 1):145.CrossRefGoogle Scholar
  47. 47.
    Berntson L, Andersson Gare B, Fasth A, Herlin T, Kristinsson J, Lahdenne P, et al. Incidence of juvenile idiopathic arthritis in the Nordic countries. A population based study with special reference to the validity of the ILAR and EULAR criteria. J Rheumatol. 2003;30:2275–82.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Pruunsild C, Uibo K, Liivamagi H, Tarraste S, Talvik T, Pelkonen P. Incidence of juvenile idiopathic arthritis in children in Estonia: a prospective population-based study. Scand J Rheumatol. 2007;36:7–13.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Virta L, Helenius H, Klaukka T. Incidence of Juvenile idiopathic arthritis is increasing in Finland [in Finnish]. Suom Laakaril. 2008;35:2806–9.Google Scholar
  50. 50.
    Rautava S, Ruuskanen O, Ouwehand A, Salminen S, Isolauri E. The hygiene hypothesis of atopic disease – an extended version. J Pediatr Gastroenterol Nutr. 2004;38:378–88.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G, et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 2011;5:82–91.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Tejesvi MV, Arvonen M, Kangas SM, Keskitalo PL, Pirttila AM, Karttunen TJ, et al. Faecal microbiome in new-onset juvenile idiopathic arthritis. Eur J Clin Microbiol Infect Dis. 2016;35(3):363–70.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, et al. The toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011;332:974–7.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Arvonen M, Vahasalo P, Turunen S, Salo HM, Maki M, Laurila K, et al. Altered expression of intestinal human leucocyte antigen D-related and immune signalling molecules in juvenile idiopathic arthritis. Clin Exp Immunol. 2012;170:266–73.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Zonneveld-Huijssoon E, van Wijk F, Roord S, Delemarre E, Meerding J, de Jager W, et al. TLR9 agonist CpG enhances protective nasal HSP60 peptide vaccine efficacy in experimental autoimmune arthritis. Ann Rheum Dis. 2012;71(10):1706–15.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Lee J, Gonzales-Navajas JM, Raz E. The “polarizing-tolerizing” mechanism of intestinal epithelium: its relevance to colonic homeostasis. Semin Immunopathol. 2008;30:3–9.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    McSorley HJ, Maizels RM. Helminth infections and host immune regulation. Clin Microbiol Rev. 2012;25:585–608.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Eissa MM, Mostafa DK, Ghazy AA, El Azzouni MZ, Boulos LM, Younis LK. Anti-arthritic activity of Schistosoma mansoni and Trichinella spiralis derived-antigens in adjuvant arthritis in rats: role of FOXP3+ Treg cells. PLoS One. 2016;11:e0165916.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Summers RW, Elliott DE, Qadir K, Urban JF Jr, Thompson R, Weinstock JV. Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease. Am J Gastroenterol. 2003;98:2034–41.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Summers RW, Elliott DE, Urban JF Jr, Thompson RA, Weinstock JV. Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology. 2005;128:825–32.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Mutapi F, Imai N, Nausch N, Bourke CD, Rujeni N, Mitchell KM, et al. Schistosome infection intensity is inversely related to auto-reactive antibody levels. PLoS One. 2011;6:e19149.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Aggarwal A, Sarangi AN, Gaur P, Shukla A, Aggarwal R. Gut microbiome in children with enthesitis-related arthritis in a developing country, and the effect of probiotic administration. Clin Exp Immunol. 2016;187(3):480–9.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Stearns JC, Lynch MD, Senadheera DB, Tenenbaum HC, Goldberg MB, Cvitkovitch DG, et al. Bacterial biogeography of the human digestive tract. Sci Rep. 2011;1:170.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Momozawa Y, Deffontaine V, Louis E, Medrano JF. Characterization of bacteria in biopsies of colon and stools by high throughput sequencing of the V2 region of bacterial 16S rRNA gene in human. PLoS One. 2011;6:e16952. Scholar
  65. 65.
    Imhann F, Bonder MJ, Vich Vila A, Fu J, Mujagic Z, Vork L, et al. Proton pump inhibitors affect the gut microbiome. Gut. 2016;65:740–8.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    van der Wulp MY, Derrien M, Stellaard F, Wolters H, Kleerebezem M, Dekker J, et al. Laxative treatment with polyethylene glycol decreases microbial primary bile salt dehydroxylation and lipid metabolism in the intestine of rats. Am J Physiol Gastrointest Liver Physiol. 2013;305:G474–82.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Schloss PD, Gevers D, Westcott SL. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One. 2011;6:e27310. Scholar
  68. 68.
    Stoll ML, Kumar R, Lefkowitz EJ, Cron RQ, Morrow CD, Barnes S. Fecal metabolomics in pediatric spondyloarthritis implicate decreased metabolic diversity and altered tryptophan metabolism as pathogenic factors. Genes Immun. 2016;17:400–5.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Stoll M, Weiss P, Weiss J, Nigrovic P, Edelheit B, Bridges S, et al. Age and fecal microbial strain-specific differences in patients with spondyloarthritis. Arth Res Ther. 2018;20:14.CrossRefGoogle Scholar
  70. 70.
    Nayak RR, Loughlin CO, Fischbach M, Turnbaugh PJ. Methotrexate is an antibacterial drug metabolized by human gut bacteria. In: 2016 ACR/ARHP annual meeting. 2016.Google Scholar
  71. 71.
    Swidsinski A, Loening-Baucke V, Schulz S, Manowsky J, Verstraelen H, Swidsinski S. Functional anatomy of the colonic bioreactor: impact of antibiotics and Saccharomyces boulardii on bacterial composition in human fecal cylinders. Syst Appl Microbiol. 2016;39:67–75.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Ortiz P, Bissada NF, Palomo L, Han YW, Al-Zahrani MS, Panneerselvam A, et al. Periodontal therapy reduces the severity of active rheumatoid arthritis in patients treated with or without tumor necrosis factor inhibitors. J Periodontol. 2009;80:535–40.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Dieleman LA, Goerres MS, Arends A, Sprengers D, Torrice C, Hoentjen F, et al. Lactobacillus GG prevents recurrence of colitis in HLA-B27 transgenic rats after antibiotic treatment. Gut. 2003;52:370–6.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Segain JP, Raingeard de la Bletiere D, Bourreille A, Leray V, Gervois N, Rosales C, et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. Gut. 2000;47:397–403.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105:16731–6.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Picco P, Gattorno M, Marchese N, Vignola S, Sormani MP, Barabino A, et al. Increased gut permeability in juvenile chronic arthritides. A multivariate analysis of the diagnostic parameters. Clin Exp Rheumatol. 2000;18:773–8.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. Treg induction by a rationally selected mixture of clostridia strains from the human microbiota. Nature. 2013;500:232–6.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Stoll ML, Wilson L, Barnes S, Kumar R, Genin A, Cron RQ, et al. Multiomics study of gut microbiota in enthesitis-related arthritis identify diminished microbial diversity and altered typtophan metabolism as potential factors in disease pathogenesis. Arthritis Rheum. 2015;67:S10.Google Scholar
  79. 79.
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-y M, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–73.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Mielants H, Veys EM, Cuvelier C, De Vos M, Goemaere S, Maertens M, et al. Gut inflammation in children with late onset pauciarticular juvenile chronic arthritis and evolution to adult spondyloarthropathy – a prospective study. J Rheumatol. 1993;20:1567–72.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Lionetti P, Pupi A, Veltroni M, Fonda C, Cavicchi MC, Azzari C, et al. Evidence of subclinical intestinal inflammation by 99m technetium leukocyte scintigraphy in patients with HLA-B27 positive juvenile onset active spondyloarthropathy. J Rheumatol. 2000;27:1538–41.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Stoll ML, Punaro M, Patel AS. Fecal calprotectin in children with the enthesitis-related arthritis subtype of juvenile idiopathic arthritis. J Rheumatol. 2011;38:2274–5.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Fotis L, Shaikh N, Baszis KW, Samson CM, Lev-Tzion R, French AR, et al. Serologic evidence of gut-driven systemic inflammation in juvenile idiopathic arthritis. J Rheumatol. 2017;44:1624–31.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    McGhee JR, Kunisawa J, Kiyono H. Gut lymphocyte migration: we are halfway ‘home’. Trends Immunol. 2007;28:150–3.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Salmi M, Andrew DP, Butcher EC, Jalkanen S. Dual binding capacity of mucosal immunoblasts to mucosal and synovial endothelium in humans: dissection of the molecular mechanisms. J Exp Med. 1995;181:137–49.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Fantini MC, Pallone F, Monteleone G. Common immunologic mechanisms in inflammatory bowel disease and spondylarthropathies. World J Gastroenterol. 2009;15:2472–8.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Black AP, Bhayani H, Ryder CA, Pugh MT, Gardner-Medwin JM, Southwood TR. An association between the acute phase response and patterns of antigen induced T cell proliferation in juvenile idiopathic arthritis. Arthritis Res Ther. 2003;5:R277–84.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Elewaut D, De Keyser F, Van Den Bosch F, Lazarovits AI, De Vos M, Cuvelier C, et al. Enrichment of T cells carrying beta7 integrins in inflamed synovial tissue from patients with early spondyloarthropathy, compared to rheumatoid arthritis. J Rheumatol. 1998;25:1932–7.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Wilson C, Rashid T, Tiwana H, Beyan H, Hughes L, Bansal S, et al. Cytotoxicity responses to peptide antigens in rheumatoid arthritis and ankylosing spondylitis. J Rheumatol. 2003;30:972–8.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Saxena N, Misra R, Aggarwal A. Is the enthesitis-related arthritis subtype of juvenile idiopathic arthritis a form of chronic reactive arthritis? Rheumatology. 2006;45:1129.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Granfors K, Jalkanen S, von Essen R, Lahesmaa-Rantala R, Isomaki O, Pekkola-Heino K, et al. Yersinia antigens in synovial-fluid cells from patients with reactive arthritis. N Engl J Med. 1989;320:216–21.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Singh YP, Singh AK, Aggarwal A, Misra R. Evidence of cellular immune response to outer membrane protein of Salmonella typhimurium in patients with enthesitis-related arthritis subtype of juvenile idiopathic arthritis. J Rheumatol. 2011;38:161–6.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Stoll ML, Duck LW, Cron RQ, Elson CO. Identification of a potential commensal immunologic target in enthesitis-related arthritis. Arthritis Rheumatol. 2016;68(Suppl 10:1):4550.Google Scholar
  94. 94.
    Lange L, Thiele GM, McCracken C, Wang G, Ponder LA, Angeles-Han ST, et al. Symptoms of periodontitis and antibody responses to Porphyromonas gingivalis in juvenile idiopathic arthritis. Pediatr Rheumatol Online J. 2016;14:8,016-0068-6.CrossRefGoogle Scholar
  95. 95.
    Turunen M, Kuusisto P, Uggeldahl PE, Toivanen A. Pogosta disease: clinical observations during an outbreak in the province of North Karelia, Finland. Br J Rheumatol. 1998;37:1177–80.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Marks M, Marks JL. Viral arthritis. Clin Med (Lond). 2016;16:129–34.CrossRefGoogle Scholar
  97. 97.
    Page C, Francois C, Goeb V, Duverlie G. Human parvovirus B19 and autoimmune diseases. Review of the literature and pathophysiological hypotheses. J Clin Virol. 2015;72:69–74.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Lei Y, Hu T, Song X, Nie H, Chen M, Chen W, et al. Production of autoantibodies in chronic hepatitis B virus infection is associated with the augmented function of blood CXCR5+CD4+ T cells. PLoS One. 2016;11:e0162241.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Cornillet M, Verrouil E, Cantagrel A, Serre G, Nogueira L. In ACPA-positive RA patients, antibodies to EBNA35-58Cit, a citrullinated peptide from the Epstein-Barr nuclear antigen-1, strongly cross-react with the peptide beta60-74Cit which bears the immunodominant epitope of citrullinated fibrin. Immunol Res. 2015;61:117–25.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Taylor-Robinson D, Thomas B, Rooney M. Association of Chlamydia pneumoniae with chronic juvenile arthritis. Eur J Clin Microbiol Infect Dis. 1998;17:211–2.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Altun S, Kasapcopur O, Aslan M, Karaarslan S, Koksal V, Saribas S, et al. Is there any relationship between Chlamydophila pneumoniae infection and juvenile idiopathic arthritis? J Med Microbiol. 2004;53:787–90.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Postepski J, Opoka-Winiarska V, Koziol-Montewka M, Korobowicz A, Tuszkiewicz-Misztal E. Role of mycoplasma pneumoniae infection in aetiopathogenesis of juvenile idiopatic arthritis. Med Wieku Rozwoj. 2003;7:271–7.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Oen K, Fast M, Postl B. Epidemiology of juvenile rheumatoid arthritis in Manitoba, Canada, 1975-92: cycles in incidence. J Rheumatol. 1995;22:745–50.PubMedGoogle Scholar
  104. 104.
    Nocton JJ, Miller LC, Tucker LB, Schaller JG. Human parvovirus B19-associated arthritis in children. J Pediatr. 1993;122:186–90.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Aghighi Y, Gilani Sh M, Razavi M, Zamani A, Daneshjoo K. Juvenile rheumatoid arthritis in children with Epstein Barr virus infection. Pak J Biol Sci. 2007;10:3638–43.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Adams ST, Schmidt KM, Cost KM, Marshall GS. Common variable immunodeficiency presenting with persistent parvovirus B19 infection. Pediatrics. 2012;130:e1711–5.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Kurtzman GJ, Cohen BJ, Field AM, Oseas R, Blaese RM, Young NS. Immune response to B19 parvovirus and an antibody defect in persistent viral infection. J Clin Invest. 1989;84:1114–23.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Deng X, Dong Y, Yi Q, Huang Y, Zhao D, Yang Y, et al. The determinants for the enzyme activity of human parvovirus B19 phospholipase A2 (PLA2) and its influence on cultured cells. PLoS One. 2013;8:e61440.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Chen DY, Tzang BS, Chen YM, Lan JL, Tsai CC, Hsu TC. The association of anti-parvovirus B19-VP1 unique region antibodies with antiphospholipid antibodies in patients with antiphospholipid syndrome. Clin Chim Acta. 2010;411:1084–9.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Von Landenberg P, Lehmann HW, Knoll A, Dorsch S, Modrow S. Antiphospholipid antibodies in pediatric and adult patients with rheumatic disease are associated with parvovirus B19 infection. Arthritis Rheum. 2003;48:1939–47.CrossRefGoogle Scholar
  111. 111.
    Lehmann HW, Plentz A, von Landenberg P, Kuster RM, Modrow S. Different patterns of disease manifestations of parvovirus B19-associated reactive juvenile arthritis and the induction of antiphospholipid-antibodies. Clin Rheumatol. 2008;27:333–8.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    de Groot-Mijnes JD, Dekkers J, de Visser L, Rothova A, van Loon AM, de Boer JH. Antibody production against B19 virus in ocular fluid of JIA-associated uveitis patients. Ophthalmology. 2015;122:1270,1272.e1.Google Scholar
  113. 113.
    Oguz F, Akdeniz C, Unuvar E, Kucukbasmaci O, Sidal M. Parvovirus B19 in the acute arthropathies and juvenile rheumatoid arthritis. J Paediatr Child Health. 2002;38:358–62.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Lehmann HW, Knoll A, Kuster RM, Modrow S. Frequent infection with a viral pathogen, parvovirus B19, in rheumatic diseases of childhood. Arthritis Rheum. 2003;48:1631–8.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Angelini F, Cancrini C, Colavita M, Panei P, Concato C, Romiti ML, et al. Role of parvovirus B19 infection in juvenile chronic arthritis. Is more investigation needed? Clin Exp Rheumatol. 2003;21:684.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Gonzalez B, Larranaga C, Leon O, Diaz P, Miranda M, Barria M, et al. Parvovirus B19 may have a role in the pathogenesis of juvenile idiopathic arthritis. J Rheumatol. 2007;34:1336–40.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Weissbrich B, Suss-Frohlich Y, Girschick HJ. Seroprevalence of parvovirus B19 IgG in children affected by juvenile idiopathic arthritis. Arthritis Res Ther. 2007;9:R82.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Tsai YT, Chiang BL, Kao YF, Hsieh KH. Detection of Epstein-Barr virus and cytomegalovirus genome in white blood cells from patients with juvenile rheumatoid arthritis and childhood systemic lupus erythematosus. Int Arch Allergy Immunol. 1995;106:235–40.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Massa M, Mazzoli F, Pignatti P, De Benedetti F, Passalia M, Viola S, et al. Proinflammatory responses to self HLA epitopes are triggered by molecular mimicry to Epstein-Barr virus proteins in oligoarticular juvenile idiopathic arthritis. Arthritis Rheum. 2002;46:2721–9.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Kawada J, Ito Y, Torii Y, Kimura H, Iwata N. Remission of juvenile idiopathic arthritis with primary Epstein-Barr virus infection. Rheumatology (Oxford). 2013;52:956–8.CrossRefGoogle Scholar
  121. 121.
    Damsker JM, Hansen AM, Caspi RR. Th1 and Th17 cells: adversaries and collaborators. Ann N Y Acad Sci. 2010;1183:211–21.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Rothe K, Quandt D, Schubert K, Rossol M, Klingner M, Jasinski-Bergner S, et al. Latent cytomegalovirus infection in rheumatoid arthritis and increased frequencies of cytolytic LIR-1+CD8+ T cells. Arthritis Rheumatol. 2016;68:337–46.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Petrelli A, van Wijk F. CD8(+) T cells in human autoimmune arthritis: the unusual suspects. Nat Rev Rheumatol. 2016;12:421–8.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Hunter PJ, Nistala K, Jina N, Eddaoudi A, Thomson W, Hubank M, et al. Biologic predictors of extension of oligoarticular juvenile idiopathic arthritis as determined from synovial fluid cellular composition and gene expression. Arthritis Rheum. 2010;62:896–907.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Wehrens EJ, Mijnheer G, Duurland CL, Klein M, Meerding J, van Loosdregt J, et al. Functional human regulatory T cells fail to control autoimmune inflammation due to PKB/c-akt hyperactivation in effector cells. Blood. 2011;118:3538–48.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Cunningham MW. Rheumatic fever, autoimmunity and molecular mimicry: the streptococcal connection. Int Rev Immunol. 2014;33:314–29.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Riise OR, Lee A, Cvancarova M, Handeland KS, Wathne KO, Nakstad B, et al. Recent-onset childhood arthritis – association with Streptococcus pyogenes in a population-based study. Rheumatology (Oxford). 2008;47:1006–11.CrossRefGoogle Scholar
  128. 128.
    Eastmond CJ, Calguner M, Shinebaum R, Cooke EM, Wright V. A sequential study of the relationship between faecal Klebsiella aerogenes and the common clinical manifestations of ankylosing spondylitis. Ann Rheum Dis. 1982;41:15–20.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Hunter T, Harding GK, Kaprove RE, Schroeder ML. Fecal carriage of various Klebsiella and Enterobacter species in patients with active ankylosing spondylitis. Arthritis Rheum. 1981;24:106–8.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Rashid T, Ebringer A. Autoimmunity in rheumatic diseases is induced by microbial infections via cross reactivity or molecular mimicry. Autoimmune Dis. 2012;2012:539282.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Puga Yung GL, Fidler M, Albani E, Spermon N, Teklenburg G, Newbury R, et al. Heat shock protein-derived T-cell epitopes contribute to autoimmune inflammation in pediatric Crohn’s disease. PLoS One. 2009;4:e7714.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Ovelgonne JH, Koninkx JF, Pusztai A, Bardocz S, Kok W, Ewen SW, et al. Decreased levels of heat shock proteins in gut epithelial cells after exposure to plant lectins. Gut. 2000;46:679–87.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Arvans DL, Vavricka SR, Ren H, Musch MW, Kang L, Rocha FG, et al. Luminal bacterial flora determines physiological expression of intestinal epithelial cytoprotective heat shock proteins 25 and 72. Am J Physiol Gastrointest Liver Physiol. 2005;288:G696–704.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Tao Y, Drabik KA, Waypa TS, Musch MW, Alverdy JC, Schneewind O, et al. Soluble factors from Lactobacillus GG activate MAPKs and induce cytoprotective heat shock proteins in intestinal epithelial cells. Am J Physiol Cell Physiol. 2006;290:C1018–30.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Shiobara N, Suzuki Y, Aoki H, Gotoh A, Fujii Y, Hamada Y, et al. Bacterial superantigens and T cell receptor beta-chain-bearing T cells in the immunopathogenesis of ulcerative colitis. Clin Exp Immunol. 2007;150:13–21.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Hersh AO, Prahalad S. Immunogenetics of juvenile idiopathic arthritis: a comprehensive review. J Autoimmun. 2015;64:113–24.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Opdenakker G, Proost P, Van Damme J. Microbiomic and posttranslational modifications as preludes to autoimmune diseases. Trends Mol Med. 2016;22:746–57.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Yeoh N, Burton JP, Suppiah P, Reid G, Stebbings S. The role of the microbiome in rheumatic diseases. Curr Rheumatol Rep. 2013;15:314,012-0314-y.CrossRefGoogle Scholar
  139. 139.
    Koziel J, Mydel P, Potempa J. The link between periodontal disease and rheumatoid arthritis: an updated review. Curr Rheumatol Rep. 2014;16:408,014-0408-9.CrossRefGoogle Scholar
  140. 140.
    Hitchon CA, Chandad F, Ferucci ED, Willemze A, Ioan-Facsinay A, van der Woude D, et al. Antibodies to porphyromonas gingivalis are associated with anticitrullinated protein antibodies in patients with rheumatoid arthritis and their relatives. J Rheumatol. 2010;37:1105–12.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Wegner N, Wait R, Sroka A, Eick S, Nguyen KA, Lundberg K, et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and alpha-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum. 2010;62:2662–72.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Colman RJ, Rubin DT. Fecal microbiota transplantation as therapy for inflammatory bowel disease: a systematic review and meta-analysis. J Crohns Colitis. 2014;8:1569–81.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Jenks K, Stebbings S, Burton J, Schultz M, Herbison P, Highton J. Probiotic therapy for the treatment of spondyloarthritis: a randomized controlled trial. J Rheumatol. 2010;37:2118–25.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Hold GL, Schwiertz A, Aminov RI, Blaut M, Flint HJ. Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Appl Environ Microbiol. 2003;69:4320–4.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Van den Abbeele P, Belzer C, Goossens M, Kleerebezem M, De Vos WM, Thas O, et al. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME J. 2013;7:949–61.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–50.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    MacLellan A, Moore-Connors J, Grant S, Cahill L, Langille MGI, Van Limbergen J. The impact of exclusive enteral nutrition (EEN) on the gut microbiome in Crohn’s disease: a review. Nutrients. 2017;9:0447. Scholar
  148. 148.
    Berntson L. Anti-inflammatory effect by exclusive enteral nutrition (EEN) in a patient with juvenile idiopathic arthritis (JIA): brief report. Clin Rheumatol. 2014;33(8):1173–5.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Berntson L, Hedlund-Treutiger I, Alving K. Anti-inflammatory effect of exclusive enteral nutrition in patients with juvenile idiopathic arthritis. Clin Exp Rheumatol. 2016;34:941–5.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Berntson L, Agback P, Dicksved J. Changes in fecal microbiota and metabolomics in a child with juvenile idiopathic arthritis (JIA) responding to two treatment periods with exclusive enteral nutrition (EEN). Clin Rheumatol. 2016;35(6):1501.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–8.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Salonen A, de Vos WM. Impact of diet on human intestinal microbiota and health. Annu Rev Food Sci Technol. 2014;5:239–62.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Johansson ME, Gustafsson JK, Holmen-Larsson J, Jabbar KS, Xia L, Xu H, et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut. 2014;63:281–91.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Brandtzaeg P. Homeostatic impact of indigenous microbiota and secretory immunity. Benef Microbes. 2010;1:211–27.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Collado MC, Rautava S, Isolauri E, Salminen S. Gut microbiota: a source of novel tools to reduce the risk of human disease? Pediatr Res. 2015;77:182–8.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Ruemmele FM, Veres G, Kolho KL, Griffiths A, Levine A, Escher JC, et al. Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn’s disease. J Crohns Colitis. 2014;8(10):1179–207.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Scher JU, Bretz WA, Abramson SB. Periodontal disease and subgingival microbiota as contributors for rheumatoid arthritis pathogenesis: modifiable risk factors? Curr Opin Rheumatol. 2014;26:424–9.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PediatricsKuopio University HospitalKuopioFinland
  2. 2.Department of Pediatrics/Division of RheumatologyUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations