The Microbiome: Past, Present, and Future

  • Matthew L. StollEmail author


It has been over 300 years since bacteria were initially identified, close to 150 years since their role in infectious diseases was demonstrated, and 100 years since a role in health and noncommunicable disease for our commensal intestinal bacteria was initially postulated. The role of the intestinal microbiota in autoimmune diseases such as inflammatory bowel disease and rheumatoid arthritis has sparked interest since the 1950s. However, it was not until the technological breakthroughs that tremendously expanded the capacity of sequencing and computing power that took place in the early twenty-first century was it possible to explore these associations in depth. Associations between multiple microbial agents and specific autoimmune diseases are being recognized, with some microorganisms emerging as associated with autoimmune diseases and others as even being protective. How this information will be used to prevent or treat autoimmune diseases remains to be seen.


Autoimmunity Microbiota Sequencing 



Ankylosing spondylitis


Exclusive enteral nutrition


Inflammatory bowel disease


Juvenile idiopathic arthritis


Rheumatoid arthritis


  1. 1.
    Kendall AI. Certain fundamental principles relating to the activity of Bacteria in the intestinal tract. Their relation to therapeutics. J Med Res. 1911;25(1):117–87.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Smith KA. Louis pasteur, the father of immunology? Front Immunol. 2012;3:68.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Podolsky SH. Metchnikoff and the microbiome. Lancet. 2012;380(9856):1810–1.CrossRefPubMedGoogle Scholar
  4. 4.
    Smith JL. Sir Arbuthnot lane, chronic intestinal stasis, and autointoxication. Ann Intern Med. 1982;96(3):365–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Kendall AI. The Bacteria of the intestinal tract of man. Science. 1915;42(1076):209–12.CrossRefPubMedGoogle Scholar
  6. 6.
    Ford WW. Classification of intestinal bacteria: (preliminary note). J Med Res. 1901;6(1):211–9.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Heinritz SN, Weiss E, Eklund M, Aumiller T, Louis S, Rings A, et al. Intestinal microbiota and microbial metabolites are changed in a pig model fed a high-fat/low-fiber or a low-fat/high-fiber diet. PLoS One. 2016;11(4):e0154329.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Jimenez Diaz C, Ales JM, Vivanco F. Symbiotic action of intestinal microbial flora; studies on nicotinic acid, pyridoxine, folic acid, and vitamin B12 synthesis by microbial flora in the enteric tract. Bull Inst Med Res Univ Madr. 1953;6(2–3):105–28.PubMedGoogle Scholar
  9. 9.
    Abdel-Salaam A, Leong PC. Synthesis of vitamin B(1) by intestinal bacteria of the rat. Biochem J. 1938;32(6):958–63.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ellinger P, Abdel Kader MM. The nicotinamide-saving action of tryptophan and the biosynthesis of nicotinamide by the intestinal flora of the rat. Biochem J. 1949;44(3):285–94.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Esselen WB, Fuller JE. The oxidation of ascorbic acid as influenced by intestinal bacteria. J Bacteriol. 1939;37(5):501–21.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Wainfan E, Henkin G, Rittenberg SC, Marx W. Metabolism of cholesterol by intestinal bacteria in vitro. J Biol Chem. 1954;207(2):843–9.PubMedGoogle Scholar
  13. 13.
    Azad MB, Konya T, Persaud RR, Guttman DS, Chari RS, Field CJ, et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG. 2015;123(6):983–93.CrossRefPubMedGoogle Scholar
  14. 14.
    Torrey JC. The regulation of the intestinal flora of dogs through diet. J Med Res. 1919;39(3):415–47.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Dalton HW. Implantation of B. coli into the human intestine. Ir J Med Sci. 1951;308:384–6.CrossRefGoogle Scholar
  16. 16.
    Winkelstein A. Lactobacillus acidophilus tablets in the therapy of various intestinal disorders: a preliminary report. Am Pract Dig Treat. 1955;6(7):1022–5.PubMedGoogle Scholar
  17. 17.
    Campos JV, Hoenen W, Costa A, Trabulsi L, Pontes JF. Changes in intestinal flora under tetracycline. Gastroenterology. 1958;34(4):625–35.PubMedGoogle Scholar
  18. 18.
    Anderson GW, Cunningham JD, Slinger SJ. Effect of terramycin and certain phenylarsonic acid derivatives on the growth and intestinal flora of Turkey poults. J Nutr. 1952;48(4):539–52.CrossRefPubMedGoogle Scholar
  19. 19.
    Lipman MO, Coss JA Jr, Boots RH. Changes in the bacterial flora of the throat and intestinal tract during prolonged oral administration of penicillin. Am J Med. 1948;4(5):702–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Thomas AR, Levine M. Some effects of penicillin on intestinal bacteria. J Bacteriol. 1945;49(6):623–7.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Goldberg HS, Goodman RN, Lanning B. Low-level, long-term feeding of chlortetracycline and the emergence of antibiotic-resistant enteric bacteria. Antibiot Annu. 1958;6:930–4.PubMedGoogle Scholar
  22. 22.
    Stern JR, Mc GJ. Antibiotics and early growth of rats fed a soybean oil meal diet. Arch Biochem. 1950;28(3):364–70.PubMedGoogle Scholar
  23. 23.
    Berg LR, Bearse GE, Mc GJ, Miller VL. The effect of removing supplemental aureomycin from the ration on the subsequent growth of chicks. Arch Biochem. 1950;29(2):404–7.PubMedGoogle Scholar
  24. 24.
    Sieburth JM, Gutierrez J, Mc GJ, Stern JR, Schneider BH. Effect of antibiotics on intestinal microflora and on growth of turkeys and pigs. Proc Soc Exp Biol Med. 1951;76(1):15–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Forbes M, Park JT. Growth of germ-free and conventional chicks: effect of diet, dietary penicillin and bacterial environment. J Nutr. 1959;67(1):69–84.CrossRefPubMedGoogle Scholar
  26. 26.
    Eyssen H, de Somer P. The mode of action of antibiotics in stimulating growth of chicks. J Exp Med. 1963;117(1):127–38.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Saari A, Virta LJ, Sankilampi U, Dunkel L, Saxen H. Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics. 2015;135(4):617–26.CrossRefPubMedGoogle Scholar
  28. 28.
    Seneca H, Henderson E. Normal intestinal bacteria in ulcerative colitis. Gastroenterology. 1950;​15(1):34–9.PubMedGoogle Scholar
  29. 29.
    Anderson CM, Langford RF. Bacterial content of small intestine of children in health, in coeliac disease, and in fibrocystic disease of pancreas. Br Med J. 1958;1(5074):803–6.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Loveman DE, Noojin RO, Winkler CH Jr. Comparative studies of enteric bacterial flora in acne vulgaris. J Invest Dermatol. 1955;25(3):135–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Drasar BS, Shiner M. Studies on the intestinal flora. II. Bacterial flora of the small intestine in patients with gastrointestinal disorders. Gut. 1969;10(10):812–9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mansson I, Olhagen B. Intestinal Clostridium perfringens in rheumatoid arthritis and other connective tissue disorders. Studies of fecal flora, serum antitoxin levels and skin hypersensitivity. Acta Rheumatol Scand. 1966;12(3):167–74.CrossRefPubMedGoogle Scholar
  33. 33.
    Ebringer RW, Cawdell DR, Cowling P, Ebringer A. Sequential studies in ankylosing spondylitis. Association of Klebsiella pneumoniae with active disease. Ann Rheum Dis. 1978;37(2):146–51.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–8.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A, Dantas G, et al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc Natl Acad Sci U S A. 2011;108(15):6252–7.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A. 1977;74(11):5088–90.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Woese CR. Bacterial evolution. Microbiol Rev. 1987;51(2):221–71.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Vaahtovuo J, Munukka E, Korkeamaki M, Luukkainen R, Toivanen P. Fecal microbiota in early rheumatoid arthritis. J Rheumatol. 2008;35(8):1500–5.PubMedGoogle Scholar
  39. 39.
    Stebbings S, Munro K, Simon MA, Tannock G, Highton J, Harmsen H, et al. Comparison of the faecal microflora of patients with ankylosing spondylitis and controls using molecular methods of analysis. Rheumatology (Oxford). 2002;41(12):1395–401.CrossRefGoogle Scholar
  40. 40.
    Gordon JI. Honor thy gut symbionts redux. Science. 2012;336(6086):1251–3.CrossRefPubMedGoogle Scholar
  41. 41.
    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14.CrossRefGoogle Scholar
  42. 42.
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Schloss PD, Girard RA, Martin T, Edwards J, Thrash JC. Status of the archaeal and bacterial census: an update. MBio. 2016;7(3):e00201–16.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wu HJ, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32(6):815–27.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Garrett WS, Lord GM, Punit S, Lugo-Villarino G, Mazmanian SK, Ito S, et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell. 2007;131(1):33–45.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hubbard TD, Murray IA, Perdew GH. Indole and tryptophan metabolism: endogenous and dietary routes to Ah receptor activation. Drug Metab Dispos. 2015;43(10):1522–35.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.CrossRefGoogle Scholar
  48. 48.
    Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, Fernandez-Sueiro JL, et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med. 1994;180(6):2359–64.CrossRefPubMedGoogle Scholar
  49. 49.
    Dieleman LA, Goerres MS, Arends A, Sprengers D, Torrice C, Hoentjen F, et al. Lactobacillus GG prevents recurrence of colitis in HLA-B27 transgenic rats after antibiotic treatment. Gut. 2003;52(3):370–6.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lahoti TS, John K, Hughes JM, Kusnadi A, Murray IA, Krishnegowda G, et al. Aryl hydrocarbon receptor antagonism mitigates cytokine-mediated inflammatory signalling in primary human fibroblast-like synoviocytes. Ann Rheum Dis. 2013;72(10):1708–16.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife. 2013;2:e01202.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Wilson L, Arabshahi A, Simons B, Prasain JK, Barnes S. Improved high sensitivity analysis of polyphenols and their metabolites by nano-liquid chromatography-mass spectrometry. Arch Biochem Biophys. 2014;559:3–11.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Li S, Pozhitkov A, Ryan RA, Manning CS, Brown-Peterson N, Brouwer M. Constructing a fish metabolic network model. Genome Biol. 2010;11(11):R115.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Castagnini C, Luceri C, Toti S, Bigagli E, Caderni G, Femia AP, et al. Reduction of colonic inflammation in HLA-B27 transgenic rats by feeding Marie Menard apples, rich in polyphenols. Br J Nutr. 2009;102(11):1620–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Sigall-Boneh R, Pfeffer-Gik T, Segal I, Zangen T, Boaz M, Levine A. Partial enteral nutrition with a Crohn’s disease exclusion diet is effective for induction of remission in children and young adults with Crohn’s disease. Inflamm Bowel Dis. 2014;20(8):1353–60.CrossRefPubMedGoogle Scholar
  56. 56.
    Soo J, Malik BA, Turner JM, Persad R, Wine E, Siminoski K, et al. Use of exclusive enteral nutrition is just as effective as corticosteroids in newly diagnosed pediatric Crohn’s disease. Dig Dis Sci. 2013;58(12):3584–91.CrossRefPubMedGoogle Scholar
  57. 57.
    Berntson L, Hedlund-Treutiger I, Alving K. Anti-inflammatory effect of exclusive enteral nutrition in patients with juvenile idiopathic arthritis. Clin Exp Rheumatol. 2016;34(5):941–5.PubMedGoogle Scholar
  58. 58.
    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Abramowicz S, Susarla HK, Kim S, Kaban LB. Physical findings associated with active temporomandibular joint inflammation in children with juvenile idiopathic arthritis. J Oral Maxillofac Surg. 2013;71(10):1683–7.CrossRefPubMedGoogle Scholar
  60. 60.
    Saleh M, Elson CO. Experimental inflammatory bowel disease: insights into the host-microbiota dialog. Immunity. 2011;34(3):293–302.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Targan SR, Landers CJ, Yang H, Lodes MJ, Cong Y, Papadakis KA, et al. Antibodies to CBir1 flagellin define a unique response that is associated independently with complicated Crohn’s disease. Gastroenterology. 2005;128(7):2020–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Mundwiler ML, Mei L, Landers CJ, Reveille JD, Targan S, Weisman MH. Inflammatory bowel disease serologies in ankylosing spondylitis patients: a pilot study. Arthritis Res Ther. 2009;11(6):R177.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Pianta A, Arvikar S, Strle K, Drouin EE, Wang Q, Costello CE, et al. Evidence for immune relevance of Prevotella copri, a gut microbe, in patients with rheumatoid arthritis. Arthritis Rheumatol. 2016;69(5):964–75.CrossRefGoogle Scholar
  64. 64.
    Wu Z, Wang L, Tang Y, Sun X. Parasite-derived proteins for the treatment of allergies and autoimmune diseases. Front Microbiol. 2017;8:2164.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Feary J, Britton J, Leonardi-Bee J. Atopy and current intestinal parasite infection: a systematic review and meta-analysis. Allergy. 2011;66(4):569–78.CrossRefPubMedGoogle Scholar
  66. 66.
    Fleming JO, Cook TD. Multiple sclerosis and the hygiene hypothesis. Neurology. 2006;67(11):2085–6.CrossRefPubMedGoogle Scholar
  67. 67.
    Panda AK, Ravindran B, Das BK. Rheumatoid arthritis patients are free of filarial infection in an area where filariasis is endemic: comment on the article by Pineda et al. Arthritis Rheum. 2013;65(5):1402–3.CrossRefPubMedGoogle Scholar
  68. 68.
    Correale J, Farez M. Association between parasite infection and immune responses in multiple sclerosis. Ann Neurol. 2007;61(2):97–108.CrossRefPubMedGoogle Scholar
  69. 69.
    Cooper PJ, Chico ME, Platts-Mills TA, Rodrigues LC, Strachan DP, Barreto ML. Cohort profile: the Ecuador life (ECUAVIDA) study in Esmeraldas Province, Ecuador. Int J Epidemiol. 2015;44(5):1517–27.CrossRefPubMedGoogle Scholar
  70. 70.
    Lynch NR, Palenque M, Hagel I, DiPrisco MC. Clinical improvement of asthma after anthelminthic treatment in a tropical situation. Am J Respir Crit Care Med. 1997;156(1):50–4.CrossRefPubMedGoogle Scholar
  71. 71.
    Webb EL, Nampijja M, Kaweesa J, Kizindo R, Namutebi M, Nakazibwe E, et al. Helminths are positively associated with atopy and wheeze in Ugandan fishing communities: results from a cross-sectional survey. Allergy. 2016;71(8):1156–69.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Briggs N, Weatherhead J, Sastry KJ, Hotez PJ. The hygiene hypothesis and its inconvenient truths about Helminth infections. PLoS Negl Trop Dis. 2016;10(9):e0004944.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Bailey CF. The treatment of chronic rheumatic and rheumatoid arthritis by radiant heat and cataphoresis. Br Med J. 1909;1(2505):13–5.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Mayberry J. The history of 5-ASA compounds and their use in ulcerative colitis – trailblazing discoveries in gastroenterology. J Gastrointest Liver Dis. 2013;22(4):375–7.Google Scholar
  75. 75.
    O’Dell JR, Elliott JR, Mallek JA, Mikuls TR, Weaver CA, Glickstein S, et al. Treatment of early seropositive rheumatoid arthritis: doxycycline plus methotrexate versus methotrexate alone. Arthritis Rheum. 2006;54(2):621–7.CrossRefPubMedGoogle Scholar
  76. 76.
    Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ, James JA, et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med. 2003;349(16):1526–33.CrossRefPubMedGoogle Scholar
  77. 77.
    Uusitalo U, Liu X, Yang J, Aronsson CA, Hummel S, Butterworth M, et al. Association of early exposure of probiotics and islet autoimmunity in the TEDDY study. JAMA Pediatr. 2016;170(1):20–8.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Zhang GQ, Hu HJ, Liu CY, Zhang Q, Shakya S, Li ZY. Probiotics for prevention of atopy and food hypersensitivity in early childhood: a PRISMA-compliant systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore). 2016;95(8):e2562.CrossRefGoogle Scholar
  79. 79.
    Bager P, Arnved J, Ronborg S, Wohlfahrt J, Poulsen LK, Westergaard T, et al. Trichuris suis ova therapy for allergic rhinitis: a randomized, double-blind, placebo-controlled clinical trial. J Allergy Clin Immunol. 2010;125(1):123–30 e1–3.CrossRefPubMedGoogle Scholar
  80. 80.
    Bourke CD, Mutapi F, Nausch N, Photiou DM, Poulsen LK, Kristensen B, et al. Trichuris suis ova therapy for allergic rhinitis does not affect allergen-specific cytokine responses despite a parasite-specific cytokine response. Clin Exp Allergy. 2012;42(11):1582–95.CrossRefPubMedGoogle Scholar
  81. 81.
    Feary J, Venn A, Brown A, Hooi D, Falcone FH, Mortimer K, et al. Safety of hookworm infection in individuals with measurable airway responsiveness: a randomized placebo-controlled feasibility study. Clin Exp Allergy. 2009;39(7):1060–8.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Feary JR, Venn AJ, Mortimer K, Brown AP, Hooi D, Falcone FH, et al. Experimental hookworm infection: a randomized placebo-controlled trial in asthma. Clin Exp Allergy. 2010;40(2):299–306.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Summers RW, Elliott DE, Qadir K, Urban JF Jr, Thompson R, Weinstock JV. Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease. Am J Gastroenterol. 2003;98(9):2034–41.CrossRefPubMedGoogle Scholar
  84. 84.
    Summers RW, Elliott DE, Urban JF Jr, Thompson R, Weinstock JV. Trichuris suis therapy in Crohn’s disease. Gut. 2005;54(1):87–90.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Summers RW, Elliott DE, Urban JF Jr, Thompson RA, Weinstock JV. Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology. 2005;128(4):825–32.CrossRefPubMedGoogle Scholar
  86. 86.
    Sandborn WJ, Elliott DE, Weinstock J, Summers RW, Landry-Wheeler A, Silver N, et al. Randomised clinical trial: the safety and tolerability of Trichuris suis ova in patients with Crohn’s disease. Aliment Pharmacol Ther. 2013;38(3):255–63.CrossRefPubMedGoogle Scholar
  87. 87.
    Fleming JO, Isaak A, Lee JE, Luzzio CC, Carrithers MD, Cook TD, et al. Probiotic helminth administration in relapsing-remitting multiple sclerosis: a phase 1 study. Mult Scler. 2011;17(6):743–54.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Voldsgaard A, Bager P, Garde E, Akeson P, Leffers AM, Madsen CG, et al. Trichuris suis ova therapy in relapsing multiple sclerosis is safe but without signals of beneficial effect. Mult Scler. 2015;21(13):1723–9.CrossRefPubMedGoogle Scholar
  89. 89.
    Fleming J, Hernandez G, Hartman L, Maksimovic J, Nace S, Lawler B, et al. Safety and efficacy of helminth treatment in relapsing-remitting multiple sclerosis: results of the HINT 2 clinical trial. Mult Scler. 2017.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pediatrics/Division of RheumatologyUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations