Skip to main content

Water and Aquatic Fauna on Drugs: What are the Impacts of Pharmaceutical Pollution?

  • Chapter
  • First Online:
Water Management and the Environment: Case Studies (WINEC 2017)

Part of the book series: Water Science and Technology Library ((WSTL,volume 86))

Included in the following conference series:

Abstract

Pharmaceutical pollution is becoming an unavoidable environmental issue of emerging concern. As forecasted, the consumption of medicinal drugs and their use in veterinary practice is expected to systematically increase over coming years, resulting in their increased discharge. The most commonly used pharmaceuticals include non-steroidal anti-inflammatory drugs (e.g., diclofenac, naproxen, ibuprofen), cardiovascular drugs (e.g., beta-blockers, diuretics, calcium channel blockers, lipid-regulating agents), antibiotics, oral contraceptives, anti-depressants, immunosuppressive drugs and cytostatics. Active pharmaceutical ingredients (APIs) are known to partially survive the conventional process of wastewater treatment. In freshwaters, they may undergo photodegradation, biodegradation, sorption to sediments and uptake by organisms. The latter results in metabolism or bioaccumulation, and potential toxicological effects and physiological responses. The magnitude of effects is largely modulated by the concentration of APIs, time of exposure and some environmental factors such as light and nutrient availability. The response to APIs in closely taxonomically related species may be significantly different. The concomitant presence of different APIs usually evokes potentiation of adverse effects. The most serious effects of pharmaceutical pollution evidenced so far for freshwaters include increase in antibiotic-resistant microorganisms, feminization, behavioral changes, and immunosuppression in fish. Beyond any doubt, it is imperative to support systematic research on API detection methods, to monitor the great number of APIs in wastewater, surface and groundwater, and tap water, and to assess the ecological risks arising from their increased presence in the freshwater environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bácsi I, B-Béres V, Kókai Z et al (2016) Effects of non-steroidal anti-inflammatory drugs on cyanobacteria and algae in laboratory strains and in natural algal assemblages. Environ Pollut 212:508–518

    Article  CAS  Google Scholar 

  • Baranowska I, Kowalski B (2012) A rapid UHPLC method for the simultaneous determination of drugs from different therapeutic groups in surface water and wastewater. Bull Environ Contam Toxicol 89:8–14

    Article  CAS  Google Scholar 

  • Barra Caracciolo A, Topp E, Grenni P (2015) Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities, a review. J Pharm Biomed Anal 15:25–36

    Article  CAS  Google Scholar 

  • Barry MJ (2013) Effect of fluoxetine on swimming and behavioural responses of the Arabian killfish. Ecotoxicol 22:425–432

    Article  CAS  Google Scholar 

  • Belfroid A, Leonards P (1996) Effect of ethinyl oestradiol on the development of snails and amphibians. SETAC 17th Annual Meeting, Washington DC, USA

    Google Scholar 

  • Blair BD, Crago JP, Hedman CJ, Klaper RD (2013) Pharmaceuticals and personal care products found in the Great lakes above concentrations of environmental concern. Chemosphere 93:2116–2123

    Article  CAS  Google Scholar 

  • Boon PI, Cattanach M (1999) Antibiotic resistance of native and faecal bacteria isolated from rivers, reservoirs and sewage treatment facilities in Victoria, south-eastern Australia. Lett App Microbiol 28:164–168

    Article  CAS  Google Scholar 

  • Borg MA, Zarb P, Scicluna EA, Rasslan O, Gür D, Ben Redjeb S, Elnasser Z, Daoud Z (2010) Antibiotic consumption as a driver for resistance in Staphylococcus aureus and Escherichia coli within a developing region. Am J Infect Control 38:212–226

    Article  Google Scholar 

  • Bôto M, Almeida CMR, Mucha AP (2016) Potential of constructed wetlands for removal of antibiotics from saline aquaculture effluents. Water 8(10):465

    Article  CAS  Google Scholar 

  • Boxall AB, Rudd MA, Brooks BW et al (2012) Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect 120:1221–1229

    Article  Google Scholar 

  • Brain RA, Sanderson H, Sibley PK, Solomon KR (2006) Probabilistic ecological hazard assessment: evaluating pharmaceutical effects on aquatic higher plants as an example. Ecotoxicol Environ Saf 64:128–135

    Article  CAS  Google Scholar 

  • Breitholtz M, Bengtsson BE (2001) Oestrogens have no hormonal effect on the development and reproduction of the harpacticoid copepod Nitocra spinepes. Mar Pollut Bull 42:879–886

    Article  CAS  Google Scholar 

  • Bringolf RB, Heltsley RM, Newton TJ et al (2010) Environmental occurrence and reproductive effects of the pharmaceutical fluoxetine in native freshwater mussels. Environ Toxicol Chem 29:1311–1318

    CAS  Google Scholar 

  • Brodin T, Piovano S, Fick J et al (2014) Ecological effects of pharmaceuticals in aquatic systems-impacts through behavioural alterations. Philos Trans R Soc Lond B Biol Sci 369:20130580

    Article  CAS  Google Scholar 

  • Brooks BW, Chambliss CK, Stanley JK et al (2005) Determination of select antidepressants in fish from an effluent-dominated stream. Environ Toxicol Chem 24:464–469

    Article  CAS  Google Scholar 

  • Brooks BW, Foran CM, Richards SM et al (2003) Aquatic ecotoxicology of fluoxetine. Toxicol Lett 142:169–183

    Article  CAS  Google Scholar 

  • Bu Q, Shi X, Yu G, Huang J, Wang B (2016) Assessing the persistence of pharmaceuticals in the aquatic environment: Challenges and needs, Emerg Contam 2(3):145–147

    Article  Google Scholar 

  • Bundschuh M, Hahn T, Ehrlich B et al (2016) Acute toxicity and environmental risks of five veterinary pharmaceuticals for aquatic macroinvertebrates. Bull Environ Contam Toxicol 96:139–143

    Article  CAS  Google Scholar 

  • Caban M, Lis E, Kumirska J, Stepnowski P (2015) Determination of pharmaceutical residues in drinking water in Poland using a new SPE-GC-MS(SIM) method based on Speedisk extraction disks and DIMETRIS derivatization. Sci Total Environ 15:402–411

    Article  CAS  Google Scholar 

  • Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144

    Article  CAS  Google Scholar 

  • Campbell CG, Borglin SE, Green B et al (2006) Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: A review. Chemosphere 65(8):1265–1280

    Article  CAS  Google Scholar 

  • Cardoso O, Porcher JM, Sanchez W (2014) Factory-discharged pharmaceuticals could be a relevant source of aquatic environment contamination: review of evidence and need for knowledge. Chemosphere 115:20–30

    Article  CAS  Google Scholar 

  • Celiz MD, Tso J, Aga DS (2009) Pharmaceutical metabolites in the environment: analytical challenges and ecological risks. Environ Toxicol Chem 28:2473–2484

    Article  CAS  Google Scholar 

  • Chikae M, Ikeda R, Hasan Q et al (2003) Effect of alkylphenols on adult male medaka: Plasma vitellogenin goes up to the level of estrous female. Environ Tox Pharma 15(1):33–36

    Article  CAS  Google Scholar 

  • Cleuver M (2008) Chronic mixture toxicity of pharmaceuticals to daphnia—the example of nonsteroidal anti-inflammatory drugs. In: Pharmaceuticals in environment, Springer, Berlin pp. 227–284

    Google Scholar 

  • Concas A, Pierobon P, Mostallino MC et al (1998) Modulation of aminobutyricacic (GABA) receptors and the feeding response by neurosteroids in Hydra vulgaris. Neuroscience 85:979–988

    Article  CAS  Google Scholar 

  • Corcoran J, Winter MJ, Tyler CR (2010) Pharmaceuticals in the aquatic environment: a critical review of the evidence for health effects in fish. Crit Rev Toxicol 40:287–304

    Article  CAS  Google Scholar 

  • Crane M, Watts C, Boucard T (2006) Chronic aquatic environmental risk from exposure to human pharmaceuticals. Sci Tot Environ 367:23–41

    Article  CAS  Google Scholar 

  • Daughton CG (2003) Cradle-to-cradle stewardship of drugs for minimizing their environmental disposition while promoting human health. II. Drug disposal, waste reduction, and future directions. Environ Health Perspect 111:775–785

    Article  CAS  Google Scholar 

  • De Lange HJ, Noordoven W, Murk AJ et al (2006) Behavioural responses of Gammarus pulex (Crustacea, Amphipoda) to low concentrations of pharmaceuticals. Aquat Toxicol 78:209–216

    Article  CAS  Google Scholar 

  • Ding J, Lu G, Li S et al (2015) Biological fate and effects of propranolol in an experimental aquatic food chain. Sci Total Environ 1:31–39

    Article  CAS  Google Scholar 

  • Du B, Haddad SP, Luek A et al (2014) Bioaccumulation and trophic dilution of human pharmaceuticals across trophic positions of an effluent-dependent wadeable stream. Philos Trans R Soc Lond B Biol Sci 369:1656

    Article  CAS  Google Scholar 

  • Du B, Haddad SP, Scott WC et al (2015) Pharmaceutical bioaccumulation by periphyton and snails in an effluent-dependent stream during an extreme drought. Chemosphere 119:927–934

    Article  CAS  Google Scholar 

  • Dzieweczynski TL, Hebert OL (2012) Fluoxetine alters behavioral consistency of aggression and courtship in male Siamense fightingfish, Betta splendens. Physiol Behav 20:92–97

    Article  CAS  Google Scholar 

  • Ellesat KS, Tollefsen KE, Asberg A et al (2010) Cytotoxicity of atorvastatin and simvastatin on primary rainbow trout (Oncorhynchus mykiss) hepatocytes. Toxicol In Vitro 24:1610–1618

    Article  CAS  Google Scholar 

  • Fent K (2008) Effects of pharmaceuticals on aquatic organisms. In: Pharmaceuticals in environment, Springer, Berlin, pp. 175–203

    Google Scholar 

  • Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159

    Article  CAS  Google Scholar 

  • Ferrari B, Mons R, Vollat B et al (2004) Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environ Toxicol Chem 23:1344–1354

    Article  CAS  Google Scholar 

  • Ferrari B, Paxeus N, Lo Giudice R, Pollio A, Garric J (2003) Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotox Environ Safety 55:359–370

    Article  CAS  Google Scholar 

  • Filby AL, Thorpe KL, Maack G, Tyler CR (2007) Gene expression profiles revealing the mechanisms of antiandrogen- and estrogen-induced feminization in fish. Aquat Toxicol 81(2):219–231

    Article  CAS  Google Scholar 

  • Flaherty CM, Dodson SI (2005) Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere 61:200–207

    Article  CAS  Google Scholar 

  • Flaherty CM, Kashian DR, Dodson SI (2001) Ecological impacts of pharmaceuticals on zooplankton: the effects of three medications on Daphnia magna. In: Proceedings of the annual meeting of the society of environmental toxicology and chemistry, Baltimore

    Google Scholar 

  • Fong PP (1998) Zebra mussel spawning is induced in low concentrations of putative serotonin reuptake inhibitors. Biol Bull 194:143–149

    Article  CAS  Google Scholar 

  • Forget-Leray J, Landriau I, Minier C, Leboulenger F (2005) Impact of endocrine toxicants on survival, development, and reproduction of the estuarine copepod Eurytemora affinis (Poppe). Ecotox Environ Saf 60(3):288–294

    Article  CAS  Google Scholar 

  • Gallardo WG, Hagiwara A, Hara K et al (2000) GABA, 5-HT and amino acids in the rotifers Brachionus plicatilis and Brachionus rotundiformis. Comp Biochem Phys A 127(3):301–307

    Article  CAS  Google Scholar 

  • Gaworecki KM, Klaine SJ (2008) Behavioural and biochemical responses of hybrid striped bass during and after fluoxetine exposure. Aquat Toxicol 88:207–213

    Article  CAS  Google Scholar 

  • Gibson R, Smith MD, Spary CJ et al (2005) Mixtures of estrogenic contaminants in bile of fish exposed to wastewater treatment works effluents. Environ Sci Technol 39:246–271

    Article  CAS  Google Scholar 

  • Giebułtowicz J, Nałęcz-Jawecki G (2014) Occurrence of antidepressant residues in the sewage-impacted Vistula and Utrata rivers and in tap water in Warsaw (Poland). Ecotoxicol Environ Saf 104:103–109

    Article  CAS  Google Scholar 

  • Giebułtowicz J, Nałęcz-Jawecki G (2016) Occurrence of immunosuppressive drugs and their metabolites in the sewage-impacted Vistula and Utrata Rivers and in tap water from the Warsaw region (Poland). Chemosphere 148:137–147

    Article  CAS  Google Scholar 

  • Giebułtowicz J, Stankiewicz A, Wroczyński P, Nałęcz-Jawecki G (2016) Occurrence of cardiovascular drugs in the sewage-impacted Vistula River and in tap water in the Warsaw region (Poland). Environ Sci Pollut Res Int 23:24337–24349

    Article  CAS  Google Scholar 

  • Grabicova K, Grabic R, Blaha M et al (2015) Presence of pharmaceuticals in benthic fauna living in a small stream affected by effluent from a municipal sewage treatment plant. Water Res Apr 1:145–153

    Article  CAS  Google Scholar 

  • Gravel A, Wilson JM, Pedro DFN, Vijayan FM (2009) Non-steroidal anti-inflammatory drugs disturb in osmoregulatory, metabolic and cortisol responses associated with seawater exposure in rainbow trout. Comp Biochem Phys C 149:481–490

    Google Scholar 

  • Gyllenhammar I, Holm L, Eklund R, Berg C (2009) Reproductive toxicity in Xenopus tropicalis after developmental exposure to environmental concentrations of ethynylestradiol. Aquat Toxicol 91(2):171–178

    Article  CAS  Google Scholar 

  • Hallare AV, Kohler HR, Triebskorn R (2004) Developmental toxicity and stress protein responses in zebrafish embryos after exposure to diclofenac and its solvent, DMSO. Chemosphere 56:659–666

    Article  CAS  Google Scholar 

  • Hansen PK, Lunestad BT, Samuelsen OB (1992) Effects of oxytetracycline, oxolinic acid, and flumequine on bacteria in an artificial marine fish farm sediment. Can J Microb 38(12):1307–1312

    Article  CAS  Google Scholar 

  • Hattori RS, Fernandino JI, Kishii A et al (2009) Cortisol-induced masculinization: does thermal stress affect gonadal fate in pejerrey, a teleost fish with temperature-dependent sex determination? PLoS ONE 4(8):e6548

    Article  CAS  Google Scholar 

  • Henschel KP, Wenzel A, Diedrich M, Fliedner A (1997) Environmental hazard assessment of pharmaceuticals. Regul Toxicol Pharm 25(3):220–225

    Article  CAS  Google Scholar 

  • Hong K-B, Yooheon Park Y, Hyung Joo Suh HJ (2016) Sleep-promoting effects of a GABA/5-HTP mixture: behavioral changes and neuromodulation in an invertebrate model. Life Sci 150:42–47

    Article  CAS  Google Scholar 

  • Huggett DB, Brooks BW, Peterson B et al (2002) Toxicity of selected beta adrenergic receptor-blocking pharmaceuticals (b-blockers) on aquatic organisms. Arch Environ Contam Toxicol 43:229–235

    Article  CAS  Google Scholar 

  • Hutchinson TH, Pounds NA, Hampel M, Williams TD (1999) Impact of natural and synthetic steroids on the survival, development and reproduction of marine copepods (Tisbe battagliai). Sci Total Environ 233:167–179

    Article  CAS  Google Scholar 

  • Ibabe A, Herrero A, Cajaraville MP (2005) Modulation of peroxisome proliferator-activated receptors (PPARs) by PPAR[alpha]- and PPAR[gamma]-specific ligands and by 17[beta]-estradiol in isolated zebrafish hepatocytes. Toxicol In Vitro 19:725–735

    Article  CAS  Google Scholar 

  • IMS Institute for Healthcare Informatics (2015) Global use of medicines in 2020

    Google Scholar 

  • Ingram T, Richter U, Mehling T, Smirnova I (2011) Modelling of pH dependent noctanol/water partition coefficients of ionisable pharmaceuticals. Fluid Phase Equilib 305:197–203

    Article  CAS  Google Scholar 

  • Ishikawa TO, Herschman HR (2007) Two inducible, functional cyclooxygenase-2 genes are present in the rainbow trout genome. J Cell Biochem 102:1486–1492

    Article  CAS  Google Scholar 

  • Isidori M, Nardelli A, Parrella A et al (2006) A multispecies study to assess the toxic and genotoxic effect of pharmaceuticals: furosemide and its photoproduct. Chemosphere 63:785–793

    Article  CAS  Google Scholar 

  • Jakimska A, Śliwka-Kaszyńska M, Reszczyńska J et al (2014) Elucidation of transformation pathway of ketoprofen, ibuprofen, and furosemide in surface water and their occurrence in the aqueous environment using UHPLC-QTOF-MS. Anal Bioanal Chem 406:3667–3680

    Article  CAS  Google Scholar 

  • Jeffries KM, Brander SM, Britton MT et al (2015) Chronic exposure to low and high concentration of ibuprofen elicit different gene response patterns in a euryhaline fish. Environ Sci Pollut Res 22:17397–17413

    Article  CAS  Google Scholar 

  • Kania BF, Gralak MA, Wielgosz M (2012) Four-week fluoxetine exposure diminish aggressive behavior of male Siamense figtingfish (Betta splendens). J Behav Brain Sci 2:185–190

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2007) Multi-residue method for the determination of basic/neutral pharmaceuticals and illicit drugs in surface water by solid-phase extraction and ultra performance liquid chromatography-positive electrospray ionisation tandem mass spectrometry. J Chromatogr A 1161:132–145

    Article  CAS  Google Scholar 

  • Khetan SK, Collins TJ (2007) Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem Rev 107:2319–2364

    Article  CAS  Google Scholar 

  • Kidd KA, Blanchfield PJ, Mills KH et al (2007) Collapse of a fish population after exposure to a synthetic estrogen. P Natl Aca Sci USA 104(21):8897–8901

    Article  CAS  Google Scholar 

  • Kim Y, Choi K, Jung J et al (2007) Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environ Int 33:370–375

    Article  CAS  Google Scholar 

  • Koczura R, Mokracka J, Jabłońska L et al (2012) Antimicrobial resistance of integronharboring ` isolates from clinical samples wastewater treatment plant and river water. Sci Tot Environ 414:680–685

    Article  CAS  Google Scholar 

  • Koczura R, Mokracka J, Taraszewska A, Łopacinska N (2016) Abundance of Class 1 integron-integrase and sulfonamide resistance genes in river water and sediment is affected by anthropogenic pressure and environmental factors. Microbial Ecol 72:909–916

    Article  CAS  Google Scholar 

  • Kolpin DK, Furlong ET, Meyer MT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  • Kot-Wasik A, Jakimska A, Śliwka-Kaszyńska M (2016) Occurrence and seasonal variations of 25 pharmaceutical residues in wastewater and drinking water treatment plants. Environ Monit Assess 188:188–661

    Article  CAS  Google Scholar 

  • Kümmerer K (2009) Antibiotics in the aquatic environment—a review-part I. Chemosphere 75:417–434

    Article  CAS  Google Scholar 

  • Kunkel U, Radke M (2012) Fate of pharmaceuticals in rivers: deriving a benchmark dataset at favorable attenuation conditions. Water Res 46:5551–5565

    Article  CAS  Google Scholar 

  • Lahti M, Brozinski JM Jylhä A et al (2011) Uptake from water, biotransformation, and biliary excretion of pharmaceuticals by rainbow trout. Environ Toxicol Chem 30:1403–1411

    Article  CAS  Google Scholar 

  • Langford K, Thomas KV (2011) Input of selected human pharmaceutical metabolites into the Norwegian aquatic environment. J Environ Monitor 13:416–421

    Article  CAS  Google Scholar 

  • Li W, Shi Y, Gao L et al (2012) Investigation of antibiotics in mollusks from coastal waters in the Bohai Sea of China. Environ Pollut Mar 162:56–62

    Article  CAS  Google Scholar 

  • Liu J, Lu G, Wang Y et al (2014) Bioconcentration, metabolism, and biomarker responses in freshwater fish Carassius auratus exposed to roxithromycin. Chemosphere 99:102–108

    Article  CAS  Google Scholar 

  • López-Doval JC, Kukkonen JV, Rodrigo P, Muñoz I (2012) Effects of indomethacin and propranolol on Chironomus riparius and Physella (Costatella) acuta. Ecotoxicol Environ Saf 78:110–115

    Article  CAS  Google Scholar 

  • Łukaszewicz P, Maszkowska J, Mulkiewicz E (2016) Impact of veterinary pharmaceuticals on the agricultural environment: a re-inspection. Rev Environ Contam Toxicol. https://doi.org/10.1007/398_2016_16

    Article  Google Scholar 

  • Lynn SE, Egar JM, Walker BG et al (2007) Fish on Prozac: a simple, noninvasive physiology laboratory investigating the mechanisms of aggressive behavior in Betta splendens. Adv Physiol Educ 31(4):358–363

    Article  Google Scholar 

  • Maki T, Hasegawa H, Kitami H et al (2006) Bacterial degradation of antibiotic residues in marine fish farm sediments of Uranouchi Bay and phylogenetic analysis of antibiotic-degrading bacteria using 16S rDNA sequences. Fisheries Sci 72:811–820

    Article  CAS  Google Scholar 

  • Makowska N, Koczura R, Mokracka J (2016) Class 1 integrase, sulfonamide and tetracycline resistance genes in wastewater treatment plant and surface water. Chemosphere 144:1665–1673

    Article  CAS  Google Scholar 

  • Marques CR, Abrantes N, Goncalves F (2004) Life-history traits of standard and autochthonous cladocerans: I. Acute and chronic effects of acetylsalicylic acid. Environ Toxicol 19:518–526

    Article  CAS  Google Scholar 

  • Martínez-Hernández V, Meffe R, Herrera S et al (2014) Sorption/desorption of non-hydrophobic and ionisable pharmaceutical and personal care products from reclaimed water onto/from a natural sediment. Sci Total Environ 472:273–281

    Article  CAS  Google Scholar 

  • Meissl H, Ekstrom P (1991) Action of gamma-aminobutyric-acid (GABA) in the isolated photosensory pineal organ. Brain Res 562(1):71–78

    Article  CAS  Google Scholar 

  • Mendoza A, Aceña J, Pérez S et al (2015) Pharmaceuticals and iodinated contrast media in a hospital wastewater: a case study to analyse their presence and characterise their environmental risk and hazard. Environ Res 140:225–241

    Article  CAS  Google Scholar 

  • Muller SO (2004) Xenoestrogens: mechanisms of action and detection methods. Anal Bioanal Chem 378:582–587

    Google Scholar 

  • Munir M, Wong K, Xagoraraki I (2011) Release of antibiotic resistant bacteria and genes in the effluent and biosolids in five wastewater utilities in Michigan. Water Res 45:681–693

    Article  CAS  Google Scholar 

  • Nash JP, Kime DE, Van der Ven LTM et al (2004) Long-Term Exposure to Environmental Concentrations of the Pharmaceutical Ethynylestradiol Causes Reproductive Failure in Fish. Environ Health Persp 112(17):1725–1733

    Article  CAS  Google Scholar 

  • Nassef M, Matsumoto S, Seki M et al (2010) Acute effects of triclosan, diclofenac and carbamazepine on feeding performance of Japanese medaka fish (Oryzias latipes). Chemosphere 80:1095–1100

    Article  CAS  Google Scholar 

  • Neuparth T, Martins C, Santos CB et al (2014) Hypocholesterolaemic pharmaceutical simvastatin disrupts reproduction and population growth of the amphipod Gammarus locusta at the ng/L range. Aquat Toxicol 155:337–347

    Article  CAS  Google Scholar 

  • Nunes B, Antunes SC, Santos J et al (2014) Toxic potential of paracetamol to freshwater organisms: a headache to environmental regulators? Ecotox Environ Safe 107:178–185

    Article  CAS  Google Scholar 

  • Oetken M, Nentwig G, Loffler D et al (2005) Effect of pharmaceuticals on aquatic invertebrates. Part I. The antiepileptic drug carbamazepine. Archiv Environ Con Tox 49:353–361

    Article  CAS  Google Scholar 

  • Ohlsen K, Ziebuhr W, Koller K et al (1998) Effect of subinhibitory concentrations of antibiotics on alphatoxon (hla) gene expression on methicillin-sensitive and methicillin-resistant Staphylococus aureus isolates. Antimicrob Agents Chem 42:2817–2823

    CAS  Google Scholar 

  • Orton F, Tyler CR (2015) Do hormone-modulating chemicals impact on reproduction and development of wild amphibians? Biol Rec Camb Philosoph Soc 90(4):1100–1117

    Article  Google Scholar 

  • Owen SF, Giltrow E, Huggett DB et al (2007) Comparative physiology, pharmacology and toxicology of beta-blockers: mammals versus fish. Aquat Toxicol 82:145–162

    Article  CAS  Google Scholar 

  • Owen SF, Huggett DB, Hutchinson TH et al (2009) Uptake of propranolol, a cardiovascular pharmaceutical, from water into fish plasma and its effects on growth and organ biometry. Aquat Toxicol 93:217–224

    Article  CAS  Google Scholar 

  • Parrott JL, Balakrishnan VK (2016) Life-cycle exposure of fathead minnows to environmentally relevant concentrations of the β-blocker drug propranolol. Toxicol Chem, Environ. https://doi.org/10.1002/etc.3703

    Book  Google Scholar 

  • Pascoe D, Karntanut W, Müller CT (2003) Do pharmaceuticals affect freshwater invertebrates? a study with Hydra vulgaris. Chemosphere 51:521–528

    Article  CAS  Google Scholar 

  • Pedibhotla VK, Sarath G, Sauer JR, Stanleysamuelson DW (1995) Prostaglandin biosynthesis and subcellularlocalization of prostaglandin-H synthase activity in the lone star tick, Amblyommaamericanum. Insect Biochem Molec 25:1027–1039

    Article  CAS  Google Scholar 

  • Puckowski A, Mioduszewska K, Łukaszewicz P et al (2016) Bioaccumulation and analytics of pharmaceutical residues in the environment: a review. J Pharm Biomed Anal 5:232–255

    Article  CAS  Google Scholar 

  • Quinn B, Gagne F, Blaise C (2009) Evaluation of the acute, chronic and teratogenic effects of mixture of eleven pharmaceuticals on the cnidarian, Hydra attenuate. Sci Tot Environ 407:1072–1079

    Article  CAS  Google Scholar 

  • Ribeiro S, Torres T, Martins R, Santos MM (2015) Toxicity screening of diclofenac, propranolol, sertraline and simvastatin using Danio rerio and Paracentrotus lividus embryo bioassays. Ecotoxicol Environ Saf 114:67–74

    Article  CAS  Google Scholar 

  • Richards SM, Kelly SE, Hanson ML (2008) Zooplankton chitobiase activity as an endpoint of pharmaceutical effect. Arch Environ Contam Toxicol 54:637–644

    Article  CAS  Google Scholar 

  • Roberts SB, Langenau DM, Goetz FW (2000) Cloning and characterization of prostaglandin endoperoxide synthase-1 and -2 from the brook trout ovary. Mol Cell Endocrin 160:89–97

    Article  CAS  Google Scholar 

  • Salesa B, Ferrando MD, Villarroel MJ, Sancho E (2017) Effect of the lipid regulator Gemfibrozil in the Cladocera Daphnia magna at different temperatures. J Environ Sci Health A Tox Hazard Subst Environ Eng 52:228–234

    Article  CAS  Google Scholar 

  • Sanchez W, Sremski W, Piccini B et al (2011) Adverse effects in wild fish living downstream from pharmaceutical manufacture discharges. Environ Int 37(8):1342–1348

    Article  CAS  Google Scholar 

  • Sarma SS, González-Pérez BK, Moreno-Gutiérrez RM, Nandini S (2014) Effect of paracetamol and diclofenac on population growth of Plationus patulus and Moina macrocopa. J Environ Biol 35:119–126

    CAS  Google Scholar 

  • Seki M, Yokota H, Matsubara H, et al (2002) Effect of ethinylestradiol on the reproduction and induction of vitellogenin and testis‐ova in medaka (Oryzias latipes). Environ Toxicol Chem 21:1692–1698

    Article  CAS  Google Scholar 

  • Scheytt T, Mersmann P, Lindstädt R, Heberer T (2005) Determination of sorption coefficients of pharmaceutically active substances carbamazepine, diclofenac, and ibuprofen, in sandy sediments. Chemosphere 60:245–253

    Article  CAS  Google Scholar 

  • Schwaiger J, Ferling H, Mallow U (2004) Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I: histopathological alterations and bioaccumulation in rainbow trout. Aquat Toxicol 68:141–150

    Article  CAS  Google Scholar 

  • Semsar K, Perreault HAN, Godwin J (2004) Fluoxetine treated male wrasses exhibit low AVT expression. Brain Res 1029:141–147

    Article  CAS  Google Scholar 

  • Shryock TR, Richwine A (2010) The interface between veterinary and human antibiotic use. Ann NY Acad Sci 1213:92–105

    Article  Google Scholar 

  • Sim WJ, Lee JW, Lee ES et al (2011) Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere 82:179–186

    Article  CAS  Google Scholar 

  • Stankiewicz A, Giebułtowicz J, Stankiewicz U et al (2015) Determination of selected cardiovascular active compounds in environmental aquatic samples-methods and results, a review of global publications from the last 10 years. Chemosphere 138:642–656

    Article  CAS  Google Scholar 

  • Stanley JK, Ramirez AJ, Chambliss CK, Brooks BW (2007) Enantiospecific sublethal effects of the antidepressant fluoxetine to a model aquatic vertebrate and invertebrate. Chemosphere 69:9–16

    Article  CAS  Google Scholar 

  • Sumpter JP, Donnachie RL, Johnson AC (2014) The apparently very variable potency of antidepressant fluoxetine. Aquat Toxicol 151:57–60

    Article  CAS  Google Scholar 

  • Thaker PD (2005) Pharmaceutical data elude researchers. Environ Sci Technol 139:193A–194A

    Google Scholar 

  • Tixier C, Singer HP, Oellers S, Müller SR (2003) Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ Sci Technol 37:1061–1068

    Article  CAS  Google Scholar 

  • Vandenburgh GF, Adriaens D, Verslycke T, Janssen CR (2003) Effects of 17α-ethinyloestradiol on sexual development of the amphipod Hyalella azteca. Ecotoxicol Environ Saf 54:216–222

    Google Scholar 

  • Vasseur P, Cossu-Leguille C (2006) Linking molecular interactions to consequent effects of persistent organic pollutants (POPs) upon populations. Chemosphere 62(7):1033–1042

    Article  CAS  Google Scholar 

  • Villegas-Navarro A, Rosas-L E, Reyes JL (2003) The heart of Daphnia magna: effects of four cardioactive drugs. Comp Biochem Phys C 136:127–134

    Article  CAS  Google Scholar 

  • WHO (World Health Organization) (2011) Pharmaceuticals in drinking water. WHO/HSE/WSH/11.05. WHO, Geneva

    Google Scholar 

  • Winberg S, Nilsson GE, Olsén KH (1991) Social rank and brain levels of monoamines and monoamine metabolites in arctic char Salvelinus alpinus (L). J Comp Physiol A 168:241–246

    Article  Google Scholar 

  • Yamamoto H, Nakamura Y, Moriguchi S et al (2009) Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments. Water Res 43:351–362

    Article  CAS  Google Scholar 

  • Zou J, Neuman NF, Holland JW et al (1999) Fish macrophages express a cyclo-oxygenase-2 homologue after activation. Biochem J 340:153–159

    Article  CAS  Google Scholar 

  • Zou H, Radke M, Kierkegaard A et al (2015a) Using chemical benchmarking to determine the persistence of chemicals in a Swedish lake. Environ Sci Technol 49:1646–1653

    Article  CAS  Google Scholar 

  • Zou H, Radke M, Kierkegaard A et al (2015b) Using chemical benchmarking to determine the persistence of chemicals in a Swedish lake. Environ Sci Technol 49:1646–1653

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Rzymski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klimaszyk, P., Rzymski, P. (2018). Water and Aquatic Fauna on Drugs: What are the Impacts of Pharmaceutical Pollution?. In: Zelenakova, M. (eds) Water Management and the Environment: Case Studies. WINEC 2017. Water Science and Technology Library, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-79014-5_12

Download citation

Publish with us

Policies and ethics