Advertisement

Water and Aquatic Fauna on Drugs: What are the Impacts of Pharmaceutical Pollution?

  • Piotr Klimaszyk
  • Piotr RzymskiEmail author
Chapter
Part of the Water Science and Technology Library book series (WSTL, volume 86)

Abstract

Pharmaceutical pollution is becoming an unavoidable environmental issue of emerging concern. As forecasted, the consumption of medicinal drugs and their use in veterinary practice is expected to systematically increase over coming years, resulting in their increased discharge. The most commonly used pharmaceuticals include non-steroidal anti-inflammatory drugs (e.g., diclofenac, naproxen, ibuprofen), cardiovascular drugs (e.g., beta-blockers, diuretics, calcium channel blockers, lipid-regulating agents), antibiotics, oral contraceptives, anti-depressants, immunosuppressive drugs and cytostatics. Active pharmaceutical ingredients (APIs) are known to partially survive the conventional process of wastewater treatment. In freshwaters, they may undergo photodegradation, biodegradation, sorption to sediments and uptake by organisms. The latter results in metabolism or bioaccumulation, and potential toxicological effects and physiological responses. The magnitude of effects is largely modulated by the concentration of APIs, time of exposure and some environmental factors such as light and nutrient availability. The response to APIs in closely taxonomically related species may be significantly different. The concomitant presence of different APIs usually evokes potentiation of adverse effects. The most serious effects of pharmaceutical pollution evidenced so far for freshwaters include increase in antibiotic-resistant microorganisms, feminization, behavioral changes, and immunosuppression in fish. Beyond any doubt, it is imperative to support systematic research on API detection methods, to monitor the great number of APIs in wastewater, surface and groundwater, and tap water, and to assess the ecological risks arising from their increased presence in the freshwater environment.

Keywords

Pharmaceutical pollution Freshwater Bioaccumulation Fish physiology Toxic effects Environmental fate 

References

  1. Bácsi I, B-Béres V, Kókai Z et al (2016) Effects of non-steroidal anti-inflammatory drugs on cyanobacteria and algae in laboratory strains and in natural algal assemblages. Environ Pollut 212:508–518CrossRefGoogle Scholar
  2. Baranowska I, Kowalski B (2012) A rapid UHPLC method for the simultaneous determination of drugs from different therapeutic groups in surface water and wastewater. Bull Environ Contam Toxicol 89:8–14CrossRefGoogle Scholar
  3. Barra Caracciolo A, Topp E, Grenni P (2015) Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities, a review. J Pharm Biomed Anal 15:25–36CrossRefGoogle Scholar
  4. Barry MJ (2013) Effect of fluoxetine on swimming and behavioural responses of the Arabian killfish. Ecotoxicol 22:425–432CrossRefGoogle Scholar
  5. Belfroid A, Leonards P (1996) Effect of ethinyl oestradiol on the development of snails and amphibians. SETAC 17th Annual Meeting, Washington DC, USAGoogle Scholar
  6. Blair BD, Crago JP, Hedman CJ, Klaper RD (2013) Pharmaceuticals and personal care products found in the Great lakes above concentrations of environmental concern. Chemosphere 93:2116–2123CrossRefGoogle Scholar
  7. Boon PI, Cattanach M (1999) Antibiotic resistance of native and faecal bacteria isolated from rivers, reservoirs and sewage treatment facilities in Victoria, south-eastern Australia. Lett App Microbiol 28:164–168CrossRefGoogle Scholar
  8. Borg MA, Zarb P, Scicluna EA, Rasslan O, Gür D, Ben Redjeb S, Elnasser Z, Daoud Z (2010) Antibiotic consumption as a driver for resistance in Staphylococcus aureus and Escherichia coli within a developing region. Am J Infect Control 38:212–226CrossRefGoogle Scholar
  9. Bôto M, Almeida CMR, Mucha AP (2016) Potential of constructed wetlands for removal of antibiotics from saline aquaculture effluents. Water 8(10):465CrossRefGoogle Scholar
  10. Boxall AB, Rudd MA, Brooks BW et al (2012) Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect 120:1221–1229CrossRefGoogle Scholar
  11. Brain RA, Sanderson H, Sibley PK, Solomon KR (2006) Probabilistic ecological hazard assessment: evaluating pharmaceutical effects on aquatic higher plants as an example. Ecotoxicol Environ Saf 64:128–135CrossRefGoogle Scholar
  12. Breitholtz M, Bengtsson BE (2001) Oestrogens have no hormonal effect on the development and reproduction of the harpacticoid copepod Nitocra spinepes. Mar Pollut Bull 42:879–886CrossRefGoogle Scholar
  13. Bringolf RB, Heltsley RM, Newton TJ et al (2010) Environmental occurrence and reproductive effects of the pharmaceutical fluoxetine in native freshwater mussels. Environ Toxicol Chem 29:1311–1318Google Scholar
  14. Brodin T, Piovano S, Fick J et al (2014) Ecological effects of pharmaceuticals in aquatic systems-impacts through behavioural alterations. Philos Trans R Soc Lond B Biol Sci 369:20130580CrossRefGoogle Scholar
  15. Brooks BW, Chambliss CK, Stanley JK et al (2005) Determination of select antidepressants in fish from an effluent-dominated stream. Environ Toxicol Chem 24:464–469CrossRefGoogle Scholar
  16. Brooks BW, Foran CM, Richards SM et al (2003) Aquatic ecotoxicology of fluoxetine. Toxicol Lett 142:169–183CrossRefGoogle Scholar
  17. Bu Q, Shi X, Yu G, Huang J, Wang B (2016) Assessing the persistence of pharmaceuticals in the aquatic environment: Challenges and needs, Emerg Contam 2(3):145–147CrossRefGoogle Scholar
  18. Bundschuh M, Hahn T, Ehrlich B et al (2016) Acute toxicity and environmental risks of five veterinary pharmaceuticals for aquatic macroinvertebrates. Bull Environ Contam Toxicol 96:139–143CrossRefGoogle Scholar
  19. Caban M, Lis E, Kumirska J, Stepnowski P (2015) Determination of pharmaceutical residues in drinking water in Poland using a new SPE-GC-MS(SIM) method based on Speedisk extraction disks and DIMETRIS derivatization. Sci Total Environ 15:402–411CrossRefGoogle Scholar
  20. Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144CrossRefGoogle Scholar
  21. Campbell CG, Borglin SE, Green B et al (2006) Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: A review. Chemosphere 65(8):1265–1280CrossRefGoogle Scholar
  22. Cardoso O, Porcher JM, Sanchez W (2014) Factory-discharged pharmaceuticals could be a relevant source of aquatic environment contamination: review of evidence and need for knowledge. Chemosphere 115:20–30CrossRefGoogle Scholar
  23. Celiz MD, Tso J, Aga DS (2009) Pharmaceutical metabolites in the environment: analytical challenges and ecological risks. Environ Toxicol Chem 28:2473–2484CrossRefGoogle Scholar
  24. Chikae M, Ikeda R, Hasan Q et al (2003) Effect of alkylphenols on adult male medaka: Plasma vitellogenin goes up to the level of estrous female. Environ Tox Pharma 15(1):33–36CrossRefGoogle Scholar
  25. Cleuver M (2008) Chronic mixture toxicity of pharmaceuticals to daphnia—the example of nonsteroidal anti-inflammatory drugs. In: Pharmaceuticals in environment, Springer, Berlin pp. 227–284Google Scholar
  26. Concas A, Pierobon P, Mostallino MC et al (1998) Modulation of aminobutyricacic (GABA) receptors and the feeding response by neurosteroids in Hydra vulgaris. Neuroscience 85:979–988CrossRefGoogle Scholar
  27. Corcoran J, Winter MJ, Tyler CR (2010) Pharmaceuticals in the aquatic environment: a critical review of the evidence for health effects in fish. Crit Rev Toxicol 40:287–304CrossRefGoogle Scholar
  28. Crane M, Watts C, Boucard T (2006) Chronic aquatic environmental risk from exposure to human pharmaceuticals. Sci Tot Environ 367:23–41CrossRefGoogle Scholar
  29. Daughton CG (2003) Cradle-to-cradle stewardship of drugs for minimizing their environmental disposition while promoting human health. II. Drug disposal, waste reduction, and future directions. Environ Health Perspect 111:775–785CrossRefGoogle Scholar
  30. De Lange HJ, Noordoven W, Murk AJ et al (2006) Behavioural responses of Gammarus pulex (Crustacea, Amphipoda) to low concentrations of pharmaceuticals. Aquat Toxicol 78:209–216CrossRefGoogle Scholar
  31. Ding J, Lu G, Li S et al (2015) Biological fate and effects of propranolol in an experimental aquatic food chain. Sci Total Environ 1:31–39CrossRefGoogle Scholar
  32. Du B, Haddad SP, Luek A et al (2014) Bioaccumulation and trophic dilution of human pharmaceuticals across trophic positions of an effluent-dependent wadeable stream. Philos Trans R Soc Lond B Biol Sci 369:1656CrossRefGoogle Scholar
  33. Du B, Haddad SP, Scott WC et al (2015) Pharmaceutical bioaccumulation by periphyton and snails in an effluent-dependent stream during an extreme drought. Chemosphere 119:927–934CrossRefGoogle Scholar
  34. Dzieweczynski TL, Hebert OL (2012) Fluoxetine alters behavioral consistency of aggression and courtship in male Siamense fightingfish, Betta splendens. Physiol Behav 20:92–97CrossRefGoogle Scholar
  35. Ellesat KS, Tollefsen KE, Asberg A et al (2010) Cytotoxicity of atorvastatin and simvastatin on primary rainbow trout (Oncorhynchus mykiss) hepatocytes. Toxicol In Vitro 24:1610–1618CrossRefGoogle Scholar
  36. Fent K (2008) Effects of pharmaceuticals on aquatic organisms. In: Pharmaceuticals in environment, Springer, Berlin, pp. 175–203Google Scholar
  37. Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159CrossRefGoogle Scholar
  38. Ferrari B, Mons R, Vollat B et al (2004) Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environ Toxicol Chem 23:1344–1354CrossRefGoogle Scholar
  39. Ferrari B, Paxeus N, Lo Giudice R, Pollio A, Garric J (2003) Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotox Environ Safety 55:359–370CrossRefGoogle Scholar
  40. Filby AL, Thorpe KL, Maack G, Tyler CR (2007) Gene expression profiles revealing the mechanisms of antiandrogen- and estrogen-induced feminization in fish. Aquat Toxicol 81(2):219–231CrossRefGoogle Scholar
  41. Flaherty CM, Dodson SI (2005) Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere 61:200–207CrossRefGoogle Scholar
  42. Flaherty CM, Kashian DR, Dodson SI (2001) Ecological impacts of pharmaceuticals on zooplankton: the effects of three medications on Daphnia magna. In: Proceedings of the annual meeting of the society of environmental toxicology and chemistry, BaltimoreGoogle Scholar
  43. Fong PP (1998) Zebra mussel spawning is induced in low concentrations of putative serotonin reuptake inhibitors. Biol Bull 194:143–149CrossRefGoogle Scholar
  44. Forget-Leray J, Landriau I, Minier C, Leboulenger F (2005) Impact of endocrine toxicants on survival, development, and reproduction of the estuarine copepod Eurytemora affinis (Poppe). Ecotox Environ Saf 60(3):288–294CrossRefGoogle Scholar
  45. Gallardo WG, Hagiwara A, Hara K et al (2000) GABA, 5-HT and amino acids in the rotifers Brachionus plicatilis and Brachionus rotundiformis. Comp Biochem Phys A 127(3):301–307CrossRefGoogle Scholar
  46. Gaworecki KM, Klaine SJ (2008) Behavioural and biochemical responses of hybrid striped bass during and after fluoxetine exposure. Aquat Toxicol 88:207–213CrossRefGoogle Scholar
  47. Gibson R, Smith MD, Spary CJ et al (2005) Mixtures of estrogenic contaminants in bile of fish exposed to wastewater treatment works effluents. Environ Sci Technol 39:246–271CrossRefGoogle Scholar
  48. Giebułtowicz J, Nałęcz-Jawecki G (2014) Occurrence of antidepressant residues in the sewage-impacted Vistula and Utrata rivers and in tap water in Warsaw (Poland). Ecotoxicol Environ Saf 104:103–109CrossRefGoogle Scholar
  49. Giebułtowicz J, Nałęcz-Jawecki G (2016) Occurrence of immunosuppressive drugs and their metabolites in the sewage-impacted Vistula and Utrata Rivers and in tap water from the Warsaw region (Poland). Chemosphere 148:137–147CrossRefGoogle Scholar
  50. Giebułtowicz J, Stankiewicz A, Wroczyński P, Nałęcz-Jawecki G (2016) Occurrence of cardiovascular drugs in the sewage-impacted Vistula River and in tap water in the Warsaw region (Poland). Environ Sci Pollut Res Int 23:24337–24349CrossRefGoogle Scholar
  51. Grabicova K, Grabic R, Blaha M et al (2015) Presence of pharmaceuticals in benthic fauna living in a small stream affected by effluent from a municipal sewage treatment plant. Water Res Apr 1:145–153CrossRefGoogle Scholar
  52. Gravel A, Wilson JM, Pedro DFN, Vijayan FM (2009) Non-steroidal anti-inflammatory drugs disturb in osmoregulatory, metabolic and cortisol responses associated with seawater exposure in rainbow trout. Comp Biochem Phys C 149:481–490Google Scholar
  53. Gyllenhammar I, Holm L, Eklund R, Berg C (2009) Reproductive toxicity in Xenopus tropicalis after developmental exposure to environmental concentrations of ethynylestradiol. Aquat Toxicol 91(2):171–178CrossRefGoogle Scholar
  54. Hallare AV, Kohler HR, Triebskorn R (2004) Developmental toxicity and stress protein responses in zebrafish embryos after exposure to diclofenac and its solvent, DMSO. Chemosphere 56:659–666CrossRefGoogle Scholar
  55. Hansen PK, Lunestad BT, Samuelsen OB (1992) Effects of oxytetracycline, oxolinic acid, and flumequine on bacteria in an artificial marine fish farm sediment. Can J Microb 38(12):1307–1312CrossRefGoogle Scholar
  56. Hattori RS, Fernandino JI, Kishii A et al (2009) Cortisol-induced masculinization: does thermal stress affect gonadal fate in pejerrey, a teleost fish with temperature-dependent sex determination? PLoS ONE 4(8):e6548CrossRefGoogle Scholar
  57. Henschel KP, Wenzel A, Diedrich M, Fliedner A (1997) Environmental hazard assessment of pharmaceuticals. Regul Toxicol Pharm 25(3):220–225CrossRefGoogle Scholar
  58. Hong K-B, Yooheon Park Y, Hyung Joo Suh HJ (2016) Sleep-promoting effects of a GABA/5-HTP mixture: behavioral changes and neuromodulation in an invertebrate model. Life Sci 150:42–47CrossRefGoogle Scholar
  59. Huggett DB, Brooks BW, Peterson B et al (2002) Toxicity of selected beta adrenergic receptor-blocking pharmaceuticals (b-blockers) on aquatic organisms. Arch Environ Contam Toxicol 43:229–235CrossRefGoogle Scholar
  60. Hutchinson TH, Pounds NA, Hampel M, Williams TD (1999) Impact of natural and synthetic steroids on the survival, development and reproduction of marine copepods (Tisbe battagliai). Sci Total Environ 233:167–179CrossRefGoogle Scholar
  61. Ibabe A, Herrero A, Cajaraville MP (2005) Modulation of peroxisome proliferator-activated receptors (PPARs) by PPAR[alpha]- and PPAR[gamma]-specific ligands and by 17[beta]-estradiol in isolated zebrafish hepatocytes. Toxicol In Vitro 19:725–735CrossRefGoogle Scholar
  62. IMS Institute for Healthcare Informatics (2015) Global use of medicines in 2020Google Scholar
  63. Ingram T, Richter U, Mehling T, Smirnova I (2011) Modelling of pH dependent noctanol/water partition coefficients of ionisable pharmaceuticals. Fluid Phase Equilib 305:197–203CrossRefGoogle Scholar
  64. Ishikawa TO, Herschman HR (2007) Two inducible, functional cyclooxygenase-2 genes are present in the rainbow trout genome. J Cell Biochem 102:1486–1492CrossRefGoogle Scholar
  65. Isidori M, Nardelli A, Parrella A et al (2006) A multispecies study to assess the toxic and genotoxic effect of pharmaceuticals: furosemide and its photoproduct. Chemosphere 63:785–793CrossRefGoogle Scholar
  66. Jakimska A, Śliwka-Kaszyńska M, Reszczyńska J et al (2014) Elucidation of transformation pathway of ketoprofen, ibuprofen, and furosemide in surface water and their occurrence in the aqueous environment using UHPLC-QTOF-MS. Anal Bioanal Chem 406:3667–3680CrossRefGoogle Scholar
  67. Jeffries KM, Brander SM, Britton MT et al (2015) Chronic exposure to low and high concentration of ibuprofen elicit different gene response patterns in a euryhaline fish. Environ Sci Pollut Res 22:17397–17413CrossRefGoogle Scholar
  68. Kania BF, Gralak MA, Wielgosz M (2012) Four-week fluoxetine exposure diminish aggressive behavior of male Siamense figtingfish (Betta splendens). J Behav Brain Sci 2:185–190CrossRefGoogle Scholar
  69. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2007) Multi-residue method for the determination of basic/neutral pharmaceuticals and illicit drugs in surface water by solid-phase extraction and ultra performance liquid chromatography-positive electrospray ionisation tandem mass spectrometry. J Chromatogr A 1161:132–145CrossRefGoogle Scholar
  70. Khetan SK, Collins TJ (2007) Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem Rev 107:2319–2364CrossRefGoogle Scholar
  71. Kidd KA, Blanchfield PJ, Mills KH et al (2007) Collapse of a fish population after exposure to a synthetic estrogen. P Natl Aca Sci USA 104(21):8897–8901CrossRefGoogle Scholar
  72. Kim Y, Choi K, Jung J et al (2007) Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environ Int 33:370–375CrossRefGoogle Scholar
  73. Koczura R, Mokracka J, Jabłońska L et al (2012) Antimicrobial resistance of integronharboring ` isolates from clinical samples wastewater treatment plant and river water. Sci Tot Environ 414:680–685CrossRefGoogle Scholar
  74. Koczura R, Mokracka J, Taraszewska A, Łopacinska N (2016) Abundance of Class 1 integron-integrase and sulfonamide resistance genes in river water and sediment is affected by anthropogenic pressure and environmental factors. Microbial Ecol 72:909–916CrossRefGoogle Scholar
  75. Kolpin DK, Furlong ET, Meyer MT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211CrossRefGoogle Scholar
  76. Kot-Wasik A, Jakimska A, Śliwka-Kaszyńska M (2016) Occurrence and seasonal variations of 25 pharmaceutical residues in wastewater and drinking water treatment plants. Environ Monit Assess 188:188–661CrossRefGoogle Scholar
  77. Kümmerer K (2009) Antibiotics in the aquatic environment—a review-part I. Chemosphere 75:417–434CrossRefGoogle Scholar
  78. Kunkel U, Radke M (2012) Fate of pharmaceuticals in rivers: deriving a benchmark dataset at favorable attenuation conditions. Water Res 46:5551–5565CrossRefGoogle Scholar
  79. Lahti M, Brozinski JM Jylhä A et al (2011) Uptake from water, biotransformation, and biliary excretion of pharmaceuticals by rainbow trout. Environ Toxicol Chem 30:1403–1411CrossRefGoogle Scholar
  80. Langford K, Thomas KV (2011) Input of selected human pharmaceutical metabolites into the Norwegian aquatic environment. J Environ Monitor 13:416–421CrossRefGoogle Scholar
  81. Li W, Shi Y, Gao L et al (2012) Investigation of antibiotics in mollusks from coastal waters in the Bohai Sea of China. Environ Pollut Mar 162:56–62CrossRefGoogle Scholar
  82. Liu J, Lu G, Wang Y et al (2014) Bioconcentration, metabolism, and biomarker responses in freshwater fish Carassius auratus exposed to roxithromycin. Chemosphere 99:102–108CrossRefGoogle Scholar
  83. López-Doval JC, Kukkonen JV, Rodrigo P, Muñoz I (2012) Effects of indomethacin and propranolol on Chironomus riparius and Physella (Costatella) acuta. Ecotoxicol Environ Saf 78:110–115CrossRefGoogle Scholar
  84. Łukaszewicz P, Maszkowska J, Mulkiewicz E (2016) Impact of veterinary pharmaceuticals on the agricultural environment: a re-inspection. Rev Environ Contam Toxicol.  https://doi.org/10.1007/398_2016_16CrossRefGoogle Scholar
  85. Lynn SE, Egar JM, Walker BG et al (2007) Fish on Prozac: a simple, noninvasive physiology laboratory investigating the mechanisms of aggressive behavior in Betta splendens. Adv Physiol Educ 31(4):358–363CrossRefGoogle Scholar
  86. Maki T, Hasegawa H, Kitami H et al (2006) Bacterial degradation of antibiotic residues in marine fish farm sediments of Uranouchi Bay and phylogenetic analysis of antibiotic-degrading bacteria using 16S rDNA sequences. Fisheries Sci 72:811–820CrossRefGoogle Scholar
  87. Makowska N, Koczura R, Mokracka J (2016) Class 1 integrase, sulfonamide and tetracycline resistance genes in wastewater treatment plant and surface water. Chemosphere 144:1665–1673CrossRefGoogle Scholar
  88. Marques CR, Abrantes N, Goncalves F (2004) Life-history traits of standard and autochthonous cladocerans: I. Acute and chronic effects of acetylsalicylic acid. Environ Toxicol 19:518–526CrossRefGoogle Scholar
  89. Martínez-Hernández V, Meffe R, Herrera S et al (2014) Sorption/desorption of non-hydrophobic and ionisable pharmaceutical and personal care products from reclaimed water onto/from a natural sediment. Sci Total Environ 472:273–281CrossRefGoogle Scholar
  90. Meissl H, Ekstrom P (1991) Action of gamma-aminobutyric-acid (GABA) in the isolated photosensory pineal organ. Brain Res 562(1):71–78CrossRefGoogle Scholar
  91. Mendoza A, Aceña J, Pérez S et al (2015) Pharmaceuticals and iodinated contrast media in a hospital wastewater: a case study to analyse their presence and characterise their environmental risk and hazard. Environ Res 140:225–241CrossRefGoogle Scholar
  92. Muller SO (2004) Xenoestrogens: mechanisms of action and detection methods. Anal Bioanal Chem 378:582–587Google Scholar
  93. Munir M, Wong K, Xagoraraki I (2011) Release of antibiotic resistant bacteria and genes in the effluent and biosolids in five wastewater utilities in Michigan. Water Res 45:681–693CrossRefGoogle Scholar
  94. Nash JP, Kime DE, Van der Ven LTM et al (2004) Long-Term Exposure to Environmental Concentrations of the Pharmaceutical Ethynylestradiol Causes Reproductive Failure in Fish. Environ Health Persp 112(17):1725–1733CrossRefGoogle Scholar
  95. Nassef M, Matsumoto S, Seki M et al (2010) Acute effects of triclosan, diclofenac and carbamazepine on feeding performance of Japanese medaka fish (Oryzias latipes). Chemosphere 80:1095–1100CrossRefGoogle Scholar
  96. Neuparth T, Martins C, Santos CB et al (2014) Hypocholesterolaemic pharmaceutical simvastatin disrupts reproduction and population growth of the amphipod Gammarus locusta at the ng/L range. Aquat Toxicol 155:337–347CrossRefGoogle Scholar
  97. Nunes B, Antunes SC, Santos J et al (2014) Toxic potential of paracetamol to freshwater organisms: a headache to environmental regulators? Ecotox Environ Safe 107:178–185CrossRefGoogle Scholar
  98. Oetken M, Nentwig G, Loffler D et al (2005) Effect of pharmaceuticals on aquatic invertebrates. Part I. The antiepileptic drug carbamazepine. Archiv Environ Con Tox 49:353–361CrossRefGoogle Scholar
  99. Ohlsen K, Ziebuhr W, Koller K et al (1998) Effect of subinhibitory concentrations of antibiotics on alphatoxon (hla) gene expression on methicillin-sensitive and methicillin-resistant Staphylococus aureus isolates. Antimicrob Agents Chem 42:2817–2823Google Scholar
  100. Orton F, Tyler CR (2015) Do hormone-modulating chemicals impact on reproduction and development of wild amphibians? Biol Rec Camb Philosoph Soc 90(4):1100–1117CrossRefGoogle Scholar
  101. Owen SF, Giltrow E, Huggett DB et al (2007) Comparative physiology, pharmacology and toxicology of beta-blockers: mammals versus fish. Aquat Toxicol 82:145–162CrossRefGoogle Scholar
  102. Owen SF, Huggett DB, Hutchinson TH et al (2009) Uptake of propranolol, a cardiovascular pharmaceutical, from water into fish plasma and its effects on growth and organ biometry. Aquat Toxicol 93:217–224CrossRefGoogle Scholar
  103. Parrott JL, Balakrishnan VK (2016) Life-cycle exposure of fathead minnows to environmentally relevant concentrations of the β-blocker drug propranolol. Toxicol Chem, Environ.  https://doi.org/10.1002/etc.3703CrossRefGoogle Scholar
  104. Pascoe D, Karntanut W, Müller CT (2003) Do pharmaceuticals affect freshwater invertebrates? a study with Hydra vulgaris. Chemosphere 51:521–528CrossRefGoogle Scholar
  105. Pedibhotla VK, Sarath G, Sauer JR, Stanleysamuelson DW (1995) Prostaglandin biosynthesis and subcellularlocalization of prostaglandin-H synthase activity in the lone star tick, Amblyommaamericanum. Insect Biochem Molec 25:1027–1039CrossRefGoogle Scholar
  106. Puckowski A, Mioduszewska K, Łukaszewicz P et al (2016) Bioaccumulation and analytics of pharmaceutical residues in the environment: a review. J Pharm Biomed Anal 5:232–255CrossRefGoogle Scholar
  107. Quinn B, Gagne F, Blaise C (2009) Evaluation of the acute, chronic and teratogenic effects of mixture of eleven pharmaceuticals on the cnidarian, Hydra attenuate. Sci Tot Environ 407:1072–1079CrossRefGoogle Scholar
  108. Ribeiro S, Torres T, Martins R, Santos MM (2015) Toxicity screening of diclofenac, propranolol, sertraline and simvastatin using Danio rerio and Paracentrotus lividus embryo bioassays. Ecotoxicol Environ Saf 114:67–74CrossRefGoogle Scholar
  109. Richards SM, Kelly SE, Hanson ML (2008) Zooplankton chitobiase activity as an endpoint of pharmaceutical effect. Arch Environ Contam Toxicol 54:637–644CrossRefGoogle Scholar
  110. Roberts SB, Langenau DM, Goetz FW (2000) Cloning and characterization of prostaglandin endoperoxide synthase-1 and -2 from the brook trout ovary. Mol Cell Endocrin 160:89–97CrossRefGoogle Scholar
  111. Salesa B, Ferrando MD, Villarroel MJ, Sancho E (2017) Effect of the lipid regulator Gemfibrozil in the Cladocera Daphnia magna at different temperatures. J Environ Sci Health A Tox Hazard Subst Environ Eng 52:228–234CrossRefGoogle Scholar
  112. Sanchez W, Sremski W, Piccini B et al (2011) Adverse effects in wild fish living downstream from pharmaceutical manufacture discharges. Environ Int 37(8):1342–1348CrossRefGoogle Scholar
  113. Sarma SS, González-Pérez BK, Moreno-Gutiérrez RM, Nandini S (2014) Effect of paracetamol and diclofenac on population growth of Plationus patulus and Moina macrocopa. J Environ Biol 35:119–126Google Scholar
  114. Seki M, Yokota H, Matsubara H, et al (2002) Effect of ethinylestradiol on the reproduction and induction of vitellogenin and testis‐ova in medaka (Oryzias latipes). Environ Toxicol Chem 21:1692–1698CrossRefGoogle Scholar
  115. Scheytt T, Mersmann P, Lindstädt R, Heberer T (2005) Determination of sorption coefficients of pharmaceutically active substances carbamazepine, diclofenac, and ibuprofen, in sandy sediments. Chemosphere 60:245–253CrossRefGoogle Scholar
  116. Schwaiger J, Ferling H, Mallow U (2004) Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I: histopathological alterations and bioaccumulation in rainbow trout. Aquat Toxicol 68:141–150CrossRefGoogle Scholar
  117. Semsar K, Perreault HAN, Godwin J (2004) Fluoxetine treated male wrasses exhibit low AVT expression. Brain Res 1029:141–147CrossRefGoogle Scholar
  118. Shryock TR, Richwine A (2010) The interface between veterinary and human antibiotic use. Ann NY Acad Sci 1213:92–105CrossRefGoogle Scholar
  119. Sim WJ, Lee JW, Lee ES et al (2011) Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere 82:179–186CrossRefGoogle Scholar
  120. Stankiewicz A, Giebułtowicz J, Stankiewicz U et al (2015) Determination of selected cardiovascular active compounds in environmental aquatic samples-methods and results, a review of global publications from the last 10 years. Chemosphere 138:642–656CrossRefGoogle Scholar
  121. Stanley JK, Ramirez AJ, Chambliss CK, Brooks BW (2007) Enantiospecific sublethal effects of the antidepressant fluoxetine to a model aquatic vertebrate and invertebrate. Chemosphere 69:9–16CrossRefGoogle Scholar
  122. Sumpter JP, Donnachie RL, Johnson AC (2014) The apparently very variable potency of antidepressant fluoxetine. Aquat Toxicol 151:57–60CrossRefGoogle Scholar
  123. Thaker PD (2005) Pharmaceutical data elude researchers. Environ Sci Technol 139:193A–194AGoogle Scholar
  124. Tixier C, Singer HP, Oellers S, Müller SR (2003) Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ Sci Technol 37:1061–1068CrossRefGoogle Scholar
  125. Vandenburgh GF, Adriaens D, Verslycke T, Janssen CR (2003) Effects of 17α-ethinyloestradiol on sexual development of the amphipod Hyalella azteca. Ecotoxicol Environ Saf 54:216–222Google Scholar
  126. Vasseur P, Cossu-Leguille C (2006) Linking molecular interactions to consequent effects of persistent organic pollutants (POPs) upon populations. Chemosphere 62(7):1033–1042CrossRefGoogle Scholar
  127. Villegas-Navarro A, Rosas-L E, Reyes JL (2003) The heart of Daphnia magna: effects of four cardioactive drugs. Comp Biochem Phys C 136:127–134CrossRefGoogle Scholar
  128. WHO (World Health Organization) (2011) Pharmaceuticals in drinking water. WHO/HSE/WSH/11.05. WHO, GenevaGoogle Scholar
  129. Winberg S, Nilsson GE, Olsén KH (1991) Social rank and brain levels of monoamines and monoamine metabolites in arctic char Salvelinus alpinus (L). J Comp Physiol A 168:241–246CrossRefGoogle Scholar
  130. Yamamoto H, Nakamura Y, Moriguchi S et al (2009) Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments. Water Res 43:351–362CrossRefGoogle Scholar
  131. Zou J, Neuman NF, Holland JW et al (1999) Fish macrophages express a cyclo-oxygenase-2 homologue after activation. Biochem J 340:153–159CrossRefGoogle Scholar
  132. Zou H, Radke M, Kierkegaard A et al (2015a) Using chemical benchmarking to determine the persistence of chemicals in a Swedish lake. Environ Sci Technol 49:1646–1653CrossRefGoogle Scholar
  133. Zou H, Radke M, Kierkegaard A et al (2015b) Using chemical benchmarking to determine the persistence of chemicals in a Swedish lake. Environ Sci Technol 49:1646–1653CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Water Protection, Faculty of BiologyAdam Mickiewicz UniversityPoznańPoland
  2. 2.Department of Environmental MedicinePoznan University of Medical SciencesPoznańPoland

Personalised recommendations