Skip to main content

Improving Surface Roughness in Robotic Grinding Process

  • Conference paper
  • First Online:
ROMANSY 22 – Robot Design, Dynamics and Control

Abstract

This paper presents an attempt to robotize the grinding process and to overcome grinding vibrations and chattering. The objective is to have a finished workpiece with a high quality of the final surface. In order to achieve that, we started by choosing the right strategy to grind the workpiece that has uneven initial surface. Then, a well-known model of the process is used in order to simulate the grinding of a metallic workpiece. The robot is supposed rigid and does not contribute in the flexibility of the system. The only flexibility that was taken into consideration is that of a pneumatic actuator used to control and reduce vibrations. Its dynamic behavior is approximated using a second degree transfer function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abele, E., Bauer, J., Pischan, M., Stryk, O.V., Friedmann, M., Hemker, T.: Prediction of the tool displacement for robot milling applications using co-simulation of an industrial robot and a removal process. In: CIRP 2nd International Conference on Process Machine Interactions (2010)

    Google Scholar 

  2. Alici, G., Shirinzadeh, B.: Enhanced stiffness modeling identification and characterization for robot manipulators. IEEE 21(4), 554–561 (2005)

    MATH  Google Scholar 

  3. Chang, H.C., Wang, J.J.: A new model for grinding force prediction and analysis. Int. J. Mach. Tools Manuf. 48, 1335–1344 (2008)

    Article  Google Scholar 

  4. Dumas, C.: Développement de méthodes robotisées pour le parachèvement de pièces métalliques et composites. thèse, Université de Nantes (2011)

    Google Scholar 

  5. Dumas, C., Caro, S., Garnier, S., Furet, B.: Joint stiffness identification of six revolute industrial serial. In: Conference Papers of Flexible Automation and Intelligent Manufacturing-Intelligent manufacturing and services, vol. 27, pp. 881–888 (2011)

    Google Scholar 

  6. Durgumahanti, P.U., Singh, V., Rao, P.: A new model for grinding force prediction and analysis. Int. J. Mach. Tools Manuf 50(3), 231–240 (2010)

    Article  Google Scholar 

  7. Hahn, R.S., Lindsay, R.P.: Principles of grinding - part I: basic relationships in precision grinding and pan II: the metal removal parameter. Machinery (1971)

    Google Scholar 

  8. Palomares, E.: Dynamic behavior of pneumatic linear actuators. Mechatronics 45, 37–48 (2017)

    Article  Google Scholar 

  9. Preumont, A.: Vibration Control of Active Structures: An Introduction, 3rd edn. Université Libre de Bruxelles (2011)

    Chapter  Google Scholar 

  10. Qin, J.: Commande hybride position/force robuste d’un robot manipulateur utilisé en usinage et/ou en soudage. Arts et Métiers, Thèse (2013)

    Google Scholar 

  11. Ciurana, J., Quintana, G.: Chatter in machining processes: a review. Int. J. Mach. Tools Manuf. 51, 363–376 (2011)

    Article  Google Scholar 

  12. Salonitis, K.: Empirical estimation of grinding specific forces and energy based on a modified Werner grinding model. Procedia CIRP 8, 287–292 (2013)

    Article  Google Scholar 

  13. Vafaeesefat, A.: Optimum creep feed grinding process conditions for rene 80 supper alloy using neural network. Int. J. Precis. Eng. Manuf. 10(3), 5–11 (2009)

    Article  Google Scholar 

  14. Vieler, H., Karim, A., Lechler, A.: Drive based damping for robots with secondary encoders. Robot. Comput. Integr. Manuf. 47, 117–122 (2017)

    Article  Google Scholar 

  15. Wegener, K.: Recent developments in grinding machines. CIRP Ann. Manuf. Technol. 66, 779–802 (2017)

    Article  Google Scholar 

  16. Werner, G.: Influence of work material on grinding forces. Ann. CIRP 27, 243–248 (1978)

    Google Scholar 

  17. Zhang, H.: Chatter analysis of robotic machining process. J. Mater. Process. Technol. 173, 301–309 (2006)

    Article  Google Scholar 

Download references

Acknowledgement

We would like to thank the Robotix Academy, contract number N°002-4-09-001 for funding this work as a part of the project funded by INTERREG V-A Grande Région program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Didi Chaoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 CISM International Centre for Mechanical Sciences

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaoui, M.D., Léonard, F., Abba, G. (2019). Improving Surface Roughness in Robotic Grinding Process. In: Arakelian, V., Wenger, P. (eds) ROMANSY 22 – Robot Design, Dynamics and Control. CISM International Centre for Mechanical Sciences, vol 584. Springer, Cham. https://doi.org/10.1007/978-3-319-78963-7_46

Download citation

Publish with us

Policies and ethics