Skip to main content

Vibration-Driven Capsubot with an Opposing Spring: An Experimental Study

  • Conference paper
  • First Online:
ROMANSY 22 – Robot Design, Dynamics and Control

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 584))

Abstract

A vibration-driven locomotor (capsubot) consisting of a rigid housing and an internal body connected to the housing by a spring is considered. The system is driven and controlled by an electromagnetic actuator that provides a force interaction between the housing and the internal body. The housing moves along a line on a horizontal plane with dry friction. The control voltage is applied to the robot in a periodic pulse-width mode, the voltage polarity remaining unchanged. Theoretical analysis predicts that the speed and direction of motion of the robot can be controlled by varying the period or/and the duty cycle of the control signal. An experimental prototype of the robot is built and the experiments are performed. The experiments confirm the theoretical prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, Y., Wiercigroch, M., Pavlovskaia, E., Yu, H.: Modelling of a vibro-impact capsule system. Int. J. Mech. Sci. 66, 2–11 (2013)

    Article  Google Scholar 

  2. Liu, Y., Pavlovskaia, E., Wiercigroch, M.: Experimental verification of the vibro-impact capsule model. Nonlinear Dyn. 83(1), 1029–1041 (2016)

    Article  Google Scholar 

  3. Yan, Y., Liu, Y., Liao, M.: A comparative study of the vibro-impact capsule systems with one-sided and two-sided constraints. Nonlinear Dyn. 89(2), 1063–1087 (2017)

    Article  Google Scholar 

  4. Bolotnik, N.N., Nunuparov, A.M., Chashchukhin, V.G.: Capsule-type vibration-driven robot with an electromagnetic actuator and an opposing spring: dynamics and control of motion. J. Comput. Syst. Sci. Int. 55, 986–1000 (2016)

    Article  MathSciNet  Google Scholar 

  5. Zimmermann, K., Zeidis, I., Bolotnik, N., Pivovarov, M.: Dynamics of a two-module vibration-driven system moving along a rough horizontal plane. Multibody System Dynamics. 22, 199–219 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was partly supported by the Deutsche Forschungsgemeinschaft (Grant ZIM 540 / 19-2) and the Russian Foundation for Basic Research (Grant 17-51-12025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Zeidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 CISM International Centre for Mechanical Sciences

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nunuparov, A., Becker, F., Bolotnik, N., Zeidis, I., Zimmermann, K. (2019). Vibration-Driven Capsubot with an Opposing Spring: An Experimental Study. In: Arakelian, V., Wenger, P. (eds) ROMANSY 22 – Robot Design, Dynamics and Control. CISM International Centre for Mechanical Sciences, vol 584. Springer, Cham. https://doi.org/10.1007/978-3-319-78963-7_17

Download citation

Publish with us

Policies and ethics