Improved Fire Resistance by Using Different Types of Cements

  • Éva Lublóy
  • Katalin Kopecskó
  • György L. Balázs
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 10)

Abstract

Composition and microstructure of hardened cement paste have important influences on the properties of concrete exposed to high temperatures. An extensive experimental study was carried out to analyse the post-heating characteristics of concretes subjected to temperatures up to 800 °C. Major parameters of our study were the content of supplementary materials (slag, fly ash, trass) of cement (0, 16 or 25 m%) and the value of maximum temperature. Our results indicated that (i) the number and size of surface cracks as well as compressive strength decreased by the increasing content of supplementary materials of cements due to elevated temperature; (ii) the most intensive surface cracking was observed by using Portland cement without addition of supplementary materials. The increasing content of the supplementary material of cement increased the relative post-heating compressive strength. Tendencies of surface cracking and reduction of compressive strength were in agreement, i.e. the more surface cracks, the more strength reduction.

Keywords

Fire resistance Concrete Cement Supplementary materials 

References

  1. American Concrete Institute (1997) ACI/TMS 216 standard method for determining fire resistance of concrete and masonry construction assemblies. Framington Hills, OaklandGoogle Scholar
  2. Barbara P, Iwona W (2015) Comparative investigations of influence of chemical admixtures on pozzolanic and hydraulic activities of fly ash with the use of thermal analysis and infrared spectroscopy. J Therm Anal Calorim 120:119–127CrossRefGoogle Scholar
  3. Budelman H (1987) Strength of concrete with different moisture content after elevated temperature (Zum Einfluss erhöhter Temperatur auf Festigkeit und Verformung von Beton mit unterschiedlichen Feuchtegehalten), Heft 76, Braunschweig. ISBN 3-89288-016-6 Google Scholar
  4. Dias WPS, Khoury GA, Sulivan PJE (1990) Mechanical properties of hardened cement paste exposed to temperatures up to 700 °C. ACI Mater J 87:160–166Google Scholar
  5. Eurocode 1 (1991) Basis of design and actions on concrete structures. Part 2-2: actions on structures exposed to fire, EN 1991-1-2:2002, November 2002Google Scholar
  6. Eurocode 2 (1992) Design of concrete structures. Part 1 general rules - structural fire design EN 1992-1-2:2002, 25 FebruaryGoogle Scholar
  7. fib bulletin 38 (2007) Fire design of concrete structures- materials, structures and modelling. ISBN 978-2-88394-078-9Google Scholar
  8. Gambarova PG (2004) Opening addresses on some key issues concerning R/C fire design. In: Gambarova PG, Felicetti R, Meda A, Riva, P (eds) Proceedings for fire design of concrete structures: what now? What next? 2–3 December 2004Google Scholar
  9. Grainger BN (1980) Concrete at high tempereatures. Central Electricity Research Laboratories, LeatherheadGoogle Scholar
  10. Hinrichsmeyer K (1987) Analysis and modeling of concrete subjected to high temperature (Strukturorientierte Analyse und Modellbeschreibung der thermischen Schädigung von Beton) Heft 74 IBMB, BraunschweigGoogle Scholar
  11. Hoj NH (2005) Fire design of concrete structures. In: Balázs L, Borosnyói A (eds) Proceedings of fib symposium on keep concrete attractive, Budapest, 23–25 May 2005, p 1097–1105Google Scholar
  12. Khoury GA et al (2001) Fire design of concrete materials structures and modelling. In: 1st fib Congress, Osaka, Japan, October 2001Google Scholar
  13. Khoury GA (1995) Effect of heat on concrete material. Imperial College report, p 73Google Scholar
  14. Khoury GA, Grainger BN, Sullivan PJE (1995) Transient thermal strain of concrete: literature review, conditions within specimen and behaviour of individual constituents. Mag Concr Res 37:48–56Google Scholar
  15. Khoury GA, Sarshar R, Sulivan PJE (1990) Factors affecting the compressive strength of unsealed cement paste and concrete at elevated temperatures up to 600 °C. In: Proceedings of 2nd international workshop on mechanical behaviour of concrete under extreme thermal and hygral conditions, Weimar, p 89–92, ISSN 0863-0720Google Scholar
  16. Kopecskó K (2006) A gőzölés hatása a cement klinkerek és cementek kloridion megkötő képességére. In English: Chloride ion binding capacity of clinker minerals and cements influenced by steam curing. PhD thesis, p 100Google Scholar
  17. Kordina K (1997) Fire resistance of reinforced concrete beams. (Über das Brandverhalten punktgeschützter Stahbetonbalken), Deutscher Ausschuss für Stahlbeton, Heft 479, Beuth Verlag GmbH, Berlin, ISSN 0171-7197Google Scholar
  18. Ministry of Construction (2001) Taika Seinou Kenshouhou no Kaisetu Oyobi Keisanrei tosonso Kaisetu. Guideline on Verification Method for Fire Resistance and Exemplars. Inoue Shoin Google Scholar
  19. Schneider U (1988) Concrete at high temperatures - a general review. Fire Saf J 13:55–68CrossRefGoogle Scholar
  20. Schneider U, Lebeda C (2000) Fire protection of builldings. (Baulicher Brandschutz). W. Kohlhammer GmbH, Stuttgart, ISBN 3-17-015266-1Google Scholar
  21. Schneider U (1986) Properties of materials at high temperatures, concrete, 2nd edn. RILEM Publ., Gesamthochschule Kassel, Universität KasselGoogle Scholar
  22. Schneider U, Weiß R (1997) Kinethical treatment of thermical deterioration of concretes and its mechanical influences. Cem Concr Res 11:22–29Google Scholar
  23. Thielen KC (1994) Strength and deformation of concrete subjected to high temperature and biaxial stress-test and modeling, (Festigkeit und Verformung von Beton bei hoher Temperatur und biaxialer Beanspruchung Versuche und Modellbildung), Deutscher Ausschuss für Stahlbeton, Heft 437, Beuth Verlag GmbH, Berlin, ISSN 0171-7197Google Scholar
  24. Xu Y, Wong YL, Poon CS, Anson M (2001) Impact of high temperature on PFA concrete. Cem Concr Res 31:1065–1073CrossRefGoogle Scholar
  25. Yun L, Hung-Liang C (2015) Thermal analysis and adiabatic calorimetry for early-age concrete members. J Therm Anal Calorim 122:937–945CrossRefGoogle Scholar
  26. Waubke NV (1973) Physical analysis of strength reduction of concrete up to 1000 °C. (Über einen physikalischen Gesichtspunkt der Festigkeitsverluste von Portlandzement-betonen bei Temperaturen bis 1000 °C Brandverhalten von Bauteilen), Dissertation, TU BraunschweigGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Éva Lublóy
    • 1
  • Katalin Kopecskó
    • 2
  • György L. Balázs
    • 1
  1. 1.Department of Construction Materials and TechnologiesBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Department of Engineering Geology and GeotechnicsBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations