Skip to main content

Interval Type-2 Fuzzy Logic Dynamic Mutation and Crossover Parameter Adaptation in a Fuzzy Differential Evolution Method

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 757))

Abstract

In this paper we consider the Differential Evolution (DE) algorithm by using fuzzy logic to make dynamic changes in the mutation (F) and crossover (Cr) parameters separately, and this modification of the algorithm we can call it the Fuzzy Differential Evolution algorithm (FDE). A comparison of the FDE algorithm using type-1 fuzzy logic and interval type-2 fuzzy logic is performed for a set of Benchmark functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Zamuda, J. Brest, B. Boˇskovi´c, V. ˇZumer. “Differential evolution for parameterized procedural woody plant models reconstruction,” in ELSEVIER: Applied Soft Computing, Volume 11, Issue 8, December 2011, Pages 4904–4912.

    Google Scholar 

  2. D. Wu, A Constrained Representation Theorem for Interval Type-2 Fuzzy Sets Using Convex and Normal Embedded Type-1 Fuzzy Sets, and It’s Application to Centroid Computation,presented at the World Conf. Soft Comput., San Francisco, CA”, May 2011.

    Google Scholar 

  3. E. Mezura-Montes and A. Palomeque-Ortiz, Self-adaptive and Deterministic Parameter Control in Differential Evolution for Constrained Optimization.Efren Mezura-Montes, Laboratorio Nacional de Informatica Avanzada (LANIA A.C.), Rebsamen 80, Centro, Xalapa, Veracruz, 91000, MEXICO 2009.

    Google Scholar 

  4. F. Olivas, O. Castillo: Particle Swarm Optimization with Dynamic Parameter Adaptation Using Fuzzy Logic for Benchmark Mathematical Functions. Recent Advances on Hybrid Intelligent Systems 2013: 247–258.

    Google Scholar 

  5. F. Valdez, P. Melin, O. Castillo: An improved evolutionary method with fuzzy logic for combining Particle Swarm Optimization and Genetic Algorithms. Applied Soft Computing 11 (2011) 2625–2632.

    Google Scholar 

  6. F. Valdez, P. Melin, O. Castillo: Bio-inspired Optimization Methods on Graphic Processing Unit for Minimization of Complex Mathematical Functions. Recent Advances on Hybrid Intelligent Systems 2013: 313–322.

    Google Scholar 

  7. F. Valdez., P. Melin., O. Castillo, Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making, in: Proceedings of the IEEE International Conference on Fuzzy Systems, 2009, pp. 2114–2119.

    Google Scholar 

  8. F. Valdez, P. Melin, O. Castillo: Parallel Particle Swarm Optimization with Parameters Adaptation Using Fuzzy Logic. MICAI (2) 2012: 374–385.

    Google Scholar 

  9. J. M. Garibaldi, “Alternative forms of non-standard fuzzy sets: A discussion paper,” in Type-2 Fuzzy Logic: State of the Art and Future Directions, London, June 2010.

    Google Scholar 

  10. J. M. Mendel, “On answering the question “where do i start in order to solve a new problem involving interval type-2 fuzzy sets?”,” Information Sciences, vol. 179, no. 19, pp. 3418–3431, 2009.

    Google Scholar 

  11. J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Upper Saddle River, NJ: Prentice-Hall, 2001.

    Google Scholar 

  12. J. M. Mendel and R. I. John, “Type-2 fuzzy sets made simple,” IEEE Trans. on Fuzzy Systems, vol. 10, no. 2, pp. 117–127, 2002.

    Google Scholar 

  13. L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning-1,” Information Sciences, vol. 8, pp. 199–249, 1975.

    Google Scholar 

  14. M. Eftekhari, S.D. Katebi, M. Karimi, A.H. Jahanmir: Eliciting transparent fuzzy model using differential evolution, School of Engineering, Shiraz University, Shiraz, Iran, Applied Soft Computing 8 (2008) 466–476.

    Google Scholar 

  15. N. Hachicha, B. Jarboui, P. Siarry: A fuzzy logic control using a differential evolution algorithm aimed at modelling the financial market dynamics, Institut Supérieur de Commerce et de Comptabilité de Bizerte, Zarzouna 7021, Bizerte, Tunisia, Information Sciences 181 (2011) 79–91.

    Google Scholar 

  16. P. Ochoa, O. Castillo,J. Soria, A Fuzz modelling y Differential evolution method with dynamic adaptation of parameters for the optimization of fuzzy controllers, Norbert Wiener in the 21st Century (21CW), 2014 IEEE Conference on, 24-26 June 2014.

    Google Scholar 

  17. Price, R. Storn, Lampinen J. A., Kenneth V, Differential Evolution, Springer 2005.

    Google Scholar 

  18. R. Zhang, S. Song, C. Wu. “A hybrid differential evolution algorithm for job shop scheduling problems with expected total tardiness criterion,” in ELSEVIER: Applied Soft Computing, Available online 13 March 2012.

    Google Scholar 

  19. S.-K Oh. W.-D. Kim, W. Pedrycz, Design of optimized cascade fuzzy controller based on differential evolution: Simulation studies and practical insights, Department of Electrical Engineering, The University of Suwon, Engineering Applications of Artificial Intelligence 25 (2012) 520–532.

    Google Scholar 

  20. W. Raofen, J. Zhang, Y. Zhang, X. Wang: Assessment of human operator functional state using a novel differential evolution optimization based adaptive fuzzy model, Lab for Brain-Computer Interfaces and Control, East China University of Science and Technology, Shanghai 200237, PR China, Biomedical Signal Processing and Control 7 (2012) 490–498.

    Google Scholar 

  21. X. Yao, Y. Liu, K. H. Liang, Ling G, “Fast evolutionary algorithms. In advances in evolutionary computing: theory and applications,” Springer- Verlag, New York, 2003 92v.

    Google Scholar 

Download references

Acknowledgements

We would like to express our appreciation to CONACYT and Tijuana Institute of Technology for the support provided to this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Ochoa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ochoa, P., Castillo, O., Soria, J. (2019). Interval Type-2 Fuzzy Logic Dynamic Mutation and Crossover Parameter Adaptation in a Fuzzy Differential Evolution Method. In: Hadjiski, M., Atanassov, K. (eds) Intuitionistic Fuzziness and Other Intelligent Theories and Their Applications. Studies in Computational Intelligence, vol 757. Springer, Cham. https://doi.org/10.1007/978-3-319-78931-6_5

Download citation

Publish with us

Policies and ethics