Skip to main content

The Neuroimaging of Stroke: Structural and Functional Advances

  • Chapter
  • First Online:
Book cover The Neuroimaging of Brain Diseases

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 1451 Accesses

Abstract

Advanced magnetic resonance imaging (MRI) techniques are improving our understanding of cerebrovascular diseases. Elucidation of the critical pathways in post-stroke recovery would not only provide important fundamental insight in brain function and plasticity but could also lead the way toward development of new rehabilitation strategies for recovering stroke patients. Improvements in hardware and pulse sequences that decrease scan time while maintaining resolution will continue to impact the field. Post-processing strategies must evolve to encompass these increasingly complicated data sets. It also seems clear that multimodal imaging strategies are necessary to develop more detailed patient profiles that can be used for precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Horn JD, Pelphrey KA (2015) Neuroimaging of the developing brain. Brain Imaging Behav 9(1):1–4

    PubMed  PubMed Central  Google Scholar 

  2. Dijkhuizen RM, van der Marel K, Otte WM, Hoff EI, van der Zijden JP, van der Toorn A et al (2012) Functional MRI and diffusion tensor imaging of brain reorganization after experimental stroke. Transl Stroke Res 3(1):36–43

    PubMed  PubMed Central  Google Scholar 

  3. Corbetta M, Kincade MJ, Lewis C, Snyder AZ, Sapir A (2005) Neural basis and recovery of spatial attention deficits in spatial neglect. Nat Neurosci 8(11):1603–1610

    CAS  PubMed  Google Scholar 

  4. Farr TD, Wegener S (2010) Use of magnetic resonance imaging to predict outcome after stroke: a review of experimental and clinical evidence. J Cereb Blood Flow Metab 30(4):703–717

    PubMed  PubMed Central  Google Scholar 

  5. Ward NS (2005) Neural plasticity and recovery of function. Prog Brain Res 150:527–535

    PubMed  Google Scholar 

  6. Friston K (2002) Functional integration and inference in the brain. Prog Neurobiol 68(2):113–143

    PubMed  Google Scholar 

  7. Stephan KE, Harrison LM, Kiebel SJ, David O, Penny WD, Friston KJ (2007) Dynamic causal models of neural system dynamics:current state and future extensions. J Biosci 32(1):129–144

    PubMed  PubMed Central  Google Scholar 

  8. Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4(6):469–480

    PubMed  Google Scholar 

  9. Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis – a technical review. NMR Biomed 15(7–8):456–467

    PubMed  Google Scholar 

  10. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87(24):9868–9872

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541

    CAS  PubMed  Google Scholar 

  12. Rehme AK, Grefkes C (2013) Cerebral network disorders after stroke: evidence from imaging-based connectivity analyses of active and resting brain states in humans. J Physiol 591(1):17–31

    CAS  PubMed  Google Scholar 

  13. He BJ, Snyder AZ, Zempel JM, Smyth MD, Raichle ME (2008) Electrophysiological correlates of the brain’s intrinsic large-scale functional architecture. Proc Natl Acad Sci U S A 105(41):16039–16044

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711

    CAS  PubMed  Google Scholar 

  15. Beckmann CF (2012) Modelling with independent components. NeuroImage 62(2):891–901

    PubMed  Google Scholar 

  16. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198

    CAS  PubMed  Google Scholar 

  17. Fox MD, Greicius M (2010) Clinical applications of resting state functional connectivity. Front Syst Neurosci:17(4)

    Google Scholar 

  18. Auer DP (2008) Spontaneous low-frequency blood oxygenation level-dependent fluctuations and functional connectivity analysis of the ‘resting’ brain. Magn Reson Imaging 26(7):1055–1064

    PubMed  Google Scholar 

  19. Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1(1):13–36

    PubMed  Google Scholar 

  20. Friston KJ, Buechel C, Fink GR, Morris J, Rolls E, Dolan RJ (1997) Psychophysiological and modulatory interactions in neuroimaging. NeuroImage 6(3):218–229

    CAS  PubMed  Google Scholar 

  21. McLntosh AR, Gonzalez-Lima F (1994) Structural equation modelling and its application in network analysis in functional brain imaging. Hum Brain Mapp 2:2–22

    Google Scholar 

  22. Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influence over the brain using Granger causality and fMRI. NeuroImage 25:230–242

    PubMed  Google Scholar 

  23. Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. NeuroImage 19(4):1273–1302

    CAS  PubMed  Google Scholar 

  24. van Meer MP, van der Marel K, Wang K, Otte WM, El Bouazati S, Roeling TA et al (2010) Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity. J Neurosci 30(11):3964–3972

    PubMed  PubMed Central  Google Scholar 

  25. Carter AR, Astafiev SV, Lang CE, Connor LT, Rengachary J, Strube MJ et al (2010) Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol 67(3):365–375

    Google Scholar 

  26. Park CH, Chang WH, Ohn SH, Kim ST, Bang OY, Pascual-Leone A et al (2011) Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke 42(5):1357–1362

    PubMed  PubMed Central  Google Scholar 

  27. Schaechter JD (2004) Motor rehabilitation and brain plasticity after hemiparetic stroke. Prog Neurobiol 73(1):61–72

    PubMed  Google Scholar 

  28. Xu HQW, Chen H, Jiang L, Li K, Yu C (2014) Contribution of the resting-state functional connectivity of the contralesional primary sensorimotor cortex to motor recovery after subcortical stroke. PLoS One 9:e84729

    PubMed  PubMed Central  Google Scholar 

  29. Rehme AK, Eickhoff SB, Rottschy C, Fink GR, Grefkes C (2012) Activation likelihood estimation meta-analysis of motor-related neural activity after stroke. NeuroImage 59(3):2771–2782

    PubMed  Google Scholar 

  30. Golestani AM, Tymchuk S, Demchuk A, Goodyear BG, Group V-S (2013) Longitudinal evaluation of resting-state FMRI after acute stroke with hemiparesis. Neurorehabil Neural Repair 27(2):153–163

    PubMed  Google Scholar 

  31. van Meer MP, Otte WM, van der Marel K, Nijboer CH, Kavelaars A, van der Sprenkel JW et al (2012) Extent of bilateral neuronal network reorganization and functional recovery in relation to stroke severity. J Neurosci 32(13):4495–4507

    PubMed  PubMed Central  Google Scholar 

  32. Wang LE, Tittgemeyer M, Imperati D, Diekhoff S, Ameli M, Fink GR et al (2012) Degeneration of corpus callosum and recovery of motor function after stroke: a multimodal magnetic resonance imaging study. Hum Brain Mapp 33(12):2941–2956

    PubMed  Google Scholar 

  33. Lu J, Liu H, Zhang M, Wang D, Cao Y, Ma Q et al (2011) Focal pontine lesions provide evidence that intrinsic functional connectivity reflects polysynaptic anatomical pathways. J Neurosci 31(42):15065–15071

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Almeida SR, Vicentini J, Bonilha L, De Campos BM, Casseb RF, Min LL (2016) Brain connectivity and functional recovery in patients with ischemic stroke. J Neuroimaging 27(1):65–70

    PubMed  Google Scholar 

  35. Buch ER, Modir Shanechi A, Fourkas AD, Weber C, Birbaumer N, Cohen LG (2012) Parietofrontal integrity determines neural modulation associated with grasping imagery after stroke. Brain 135(Pt 2):596–614

    PubMed  PubMed Central  Google Scholar 

  36. Beharelle AR, Kovačević N, McIntosh AR, Levine B (2012) Brain signal variability relates to stability of behavior after recovery from diffuse brain injury. NeuroImage 60:1528–1537

    Google Scholar 

  37. Grefkes C, Nowak DA, Eickhoff SB, Dafotakis M, Küst J, Karbe H et al (2008) Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63(2):236–246

    PubMed  Google Scholar 

  38. Grefkes C, Nowak DA, Wang LE, Dafotakis M, Eickhoff SB, Fink GR (2010) Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. NeuroImage 50(1):233–242

    PubMed  Google Scholar 

  39. Rehme AK, Eickhoff SB, Wang LE, Fink GR, Grefkes C (2011) Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. NeuroImage 55(3):1147–1158

    PubMed  Google Scholar 

  40. Astafiev SV, Shulman GL, Stanley CM, Snyder AZ, Van Essen DC, Corbetta M (2003) Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. J Neurosci 23(11):4689–4699

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Regnaux JP, David D, Daniel O, Smail DB, Combeaud M, Bussel B (2005) Evidence for cognitive processes involved in the control of steady state of walking in healthy subjects and after cerebral damage. Neurorehabil Neural Repair 19(2):125–132

    CAS  PubMed  Google Scholar 

  42. Vicentini JE, Weiler M, Almeida SR, de Campos BM, Valler L, Li LM (2016) Depression and anxiety symptoms are associated to disruption of default mode network in subacute ischemic stroke. Brain Imaging Behav 11(6):1571–1580

    Google Scholar 

  43. Northoff G, Heinzel A, de Greck M, Bermpohl F, Dobrowolny H, Panksepp J (2006) Self-referential processing in our brain--a meta-analysis of imaging studies on the self. NeuroImage 31(1):440–457

    PubMed  Google Scholar 

  44. Liu Y, D'Arceuil HE, Westmoreland S, He J, Duggan M, Gonzalez RG et al (2007) Serial diffusion tensor MRI after transient and permanent cerebral ischemia in nonhuman primates. Stroke 38(1):138–145

    CAS  PubMed  Google Scholar 

  45. Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34(1):51–61

    CAS  PubMed  Google Scholar 

  46. Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD (2007) Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 130(Pt 1):170–180

    PubMed  Google Scholar 

  47. Morita N, Harada M, Uno M, Furutani K, Nishitani H (2006) Change of diffusion anisotropy in patients with acute cerebral infarction using statistical parametric analysis. Radiat Med 24(4):253–259

    PubMed  Google Scholar 

  48. Schaechter JD, Fricker ZP, Perdue KL, Helmer KG, Vangel MG, Greve DN et al (2009) Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients. Hum Brain Mapp 30(11):3461–3474

    PubMed  PubMed Central  Google Scholar 

  49. Matsuoka K, Yasuno F, Taguchi A, Yamamoto A, Kajimoto K, Kazui H et al (2015) Delayed atrophy in posterior cingulate cortex and apathy after stroke. Int J Geriatr Psychiatry 30(6):566–572

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li Min .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Almeida, S.R.M., Castellano, G., Vicentini, J., Min, L.L. (2018). The Neuroimaging of Stroke: Structural and Functional Advances. In: Habas, C. (eds) The Neuroimaging of Brain Diseases. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-78926-2_4

Download citation

Publish with us

Policies and ethics