Skip to main content

Single- and Multi-objective Optimization of Traditional and Modern Machining Processes Using Jaya Algorithm and Its Variants

  • Chapter
  • First Online:

Abstract

This chapter describes the formulation of process parameters optimization models for traditional machining processes of turning, surface grinding and modern machining processes of wire electric discharge machining (wire EDM), electro-discharge machining (EDM), micro-electric discharge machining, electro-chemical machining (ECM), abrasive waterjet machining (AWJM), focused ion beam (FIB) micro-milling, laser cutting and plasma arc machining. The TLBO and NSTLBO algorithms, Jaya algorithm and its variants such as Quasi-oppositional (QO) Jaya, multi-objective (MO) Jaya, and multi-objective quasi-oppositional (MOQO) Jaya are applied to solve the single and multi-objective optimization problems of the selected traditional and modern machining processes. The results are found better as compared to those given by the other advanced optimization algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acharya, B. G., Jain, V. K., & Batra, J. L. (1986). Multiobjective optimization of ECM process. Precision Engineering, 8, 88–96.

    Article  Google Scholar 

  • Baskar, N., Saravanan, R., Asokan, P., & Prabhaharan, G. (2004). Ants colony algorithm approach for multi-objective optimization of surface grinding operations. International Journal of Advanced Manufacturing Technology, 23, 311–317.

    Article  Google Scholar 

  • Bhattacharyya, B., & Sorkhel, S. K. (1999). Investigation for controlled electrochemical machining through response surface methodology-based approach. Journal of Materials Processing Technology, 86, 200–207.

    Article  Google Scholar 

  • Bhavsar, S. N., Aravindan, S., & Rao, P. V. (2015). Investigating material removal rate and surface roughness using multi-objective optimization for focused ion beam (FIB) micro-milling of cemented carbide. Precision Engineering, 40, 131–138.

    Article  Google Scholar 

  • Choobineh, F., Jain, V. K., (1990) Selection of ECM parameters: A fuzzy sets approach. In: Proceedings of the 1990 International Conference on Systems, Man and Cybernetics, IEEE, Los Angeles, CA, USA, pp. 430–435.

    Google Scholar 

  • Garg, M. P., Jain, A., & Bhushan, G. (2012). Modelling and multi-objective optimization of process parameters of wire electrical discharge machining using non-dominated sorting genetic algorithm-II. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226(12), 1986–2001.

    Article  Google Scholar 

  • Jain, N. K., & Jain, V. K. (2007). Optimization of electrochemical machining process parameters using genetic algorithm. Machining Science and Technology, 11, 235–258.

    Article  Google Scholar 

  • Kovacevic, M., Madic, M., Radovanovic, M., & Rancic, D. (2014). Software prototype for solving multi-objective machining optimization problems: Application in non-conventional machining processes. Expert Systems with Applications, 41, 5657–5668.

    Article  Google Scholar 

  • Kuriachen, B., Somashekhar, K. P., & Mathew, J. (2015). Multiresponse optimization of micro-wire electrical discharge machining process. The International Journal of Advanced Manufacturing Technology, 76(1–4), 91–104.

    Article  Google Scholar 

  • Kuriakose, S., & Shunmugam, M. S. (2005). Multi-objective optimization of wire-electro discharge machining process by non-dominated sorting genetic algorithm. Journal of Materials Processing Technology, 170, 133–141.

    Article  Google Scholar 

  • Mukherjee, R., & Chakraborty, S. (2013). Selection of the optimal electrochemical machining process parameters using biogeography-based optimization algorithm. International Journal of Advanced Manufacturing Technology, 64, 781–791.

    Article  Google Scholar 

  • Palanikumar, K., Latha, B., Senthilkumar, V. S., & Karthikeyan, R. (2009). Multiple performance optimization in machining of GFRP composites by a PCD tool using non-dominated sorting genetic algorithm (NSGA-II). Metals and Materials International, 15(2), 249–258.

    Article  Google Scholar 

  • Pandey, A. K., & Dubey, A. K. (2012). Simultaneous optimization of multiple quality characteristics in laser cutting of titanium alloy sheet. Optics & Laser Technology, 44, 1858–1865.

    Article  Google Scholar 

  • Pawar, P. J., & Rao, R. V. (2013). Parameter optimization of machining processes using teaching—learning-based optimization algorithm. International Journal of Advanced Manufacturing Technology, 67, 995–1006.

    Article  Google Scholar 

  • Pawar, P. J., Rao, R. V., & Davim, J. P. (2010). Multiobjective optimization of grinding process parameters using particle swarm optimization algorithm. Materials and Manufacturing Processes, 25, 424–431.

    Article  Google Scholar 

  • Rao, R. V. (2010). Advanced modelling and optimization of manufacturing processes: international research and development. London: Springer Verlag.

    Google Scholar 

  • Rao, R. V., Pawar, P. J., & Shankar, R. (2008). Multi-objective optimization of electrochemical machining process parameters using a particle swarm optimization algorithm. Journal of Engineering Manufacture, 222, 949–958.

    Article  Google Scholar 

  • Rao, R. V., Rai, D. P., & Balic, J. (2017a). A multi-objective algorithm for optimization of modern machining processes. Engineering Applications of Artificial Intelligence, 61, 103–125.

    Article  Google Scholar 

  • Rao, R. V., Rai, D. P., Ramkumar, J., & Balic, J. (2016a). A new multiobjective Jaya algorithm for optimization of modern machining processes. Advances in Production Engineering and Management, 11(4), 271–286.

    Article  Google Scholar 

  • Rao, R. V., Rai, D. P., Balic, J. (2016b) Multi-objective optimization of machining and micro-machining processes using non-dominated sorting teaching–learning-based optimization algorithm. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-016-1210-5.

  • Rao, R. V., Rai, D. P., Balic, J., Cus, F. (2017b) Optimization of abrasive waterjet machining process using multiobjective Jaya algorithm. Materials Today: Proceedings.

    Google Scholar 

  • Saravanan, R., Asokan, P., & Sachidanandam, M. (2002). A multiobjective genetic algorithm approach for optimization of surface grinding operations. International Journal of Machine Tools and Manufacture, 42, 1327–1334.

    Article  Google Scholar 

  • Shukla, R., & Singh, D. (2016). Experimentation investigation of abrasive water jet machining parameters using Taguchi and evolutionary optimization techniques. Swarm and Evolutionary Computation, 32, 167–183.

    Article  Google Scholar 

  • Wen, X. M., Tay, A. A. O., & Nee, A. Y. C. (1992). Microcomputer based optimization of the surface grinding process. Journal of Materials Processing Technology, 29, 75–90.

    Article  Google Scholar 

  • Zou, F., Wang, L., Hei, X., Chen, D., & Wang, B. (2014). Multi-objective optimization using teaching–learning-based optimization algorithm. Engineering Applications of Artificial Intelligence, 26, 1291–1300.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravipudi Venkata Rao .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Venkata Rao, R. (2019). Single- and Multi-objective Optimization of Traditional and Modern Machining Processes Using Jaya Algorithm and Its Variants. In: Jaya: An Advanced Optimization Algorithm and its Engineering Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-78922-4_7

Download citation

Publish with us

Policies and ethics