Skip to main content

Diffusion Method of Steel Boriding Without Formation of Iron Borides

  • Conference paper
  • First Online:
Advanced Materials (PHENMA 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 207))

Abstract

A new method of strengthening of steel surfaces based on the diffusion saturation of surface layers by boron atoms is proposed. In contrast to the known method of chemical heat treatment (CHT), where boriding of the steel surface is carried out at high temperatures, in this case the surface is treated at temperatures below 800 °C. The advantage of this approach is that iron borides do not appear on the steel surface . Such compounds strengthen the surface and in the same time increase its fragility, which can lead to the destruction of the surface when rapidly changing the mechanical action on the metal. In this article, we consider the possibility to create a new surface boriding technology without formation of iron borides. Three variants of this technology are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.P. Chizhevski, J. Rus. Metall. Soc. 4(19), 645 (1915) (in Russian)

    Google Scholar 

  2. H. Kunst, B. Haase, J.C. Malloy, K. Wittel, M.C. Nestler, A.R. Nicoll, U. Erning, G. Rauscher, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH, Weinheim, 2006)

    Google Scholar 

  3. A. Matuschka, in Boronizing (Hanser, Munich, 1980), 97pp

    Google Scholar 

  4. M.P. Seah, Acta Metall. 28, 955 (1980)

    Article  CAS  Google Scholar 

  5. D. Briggs, M.P. Seah, Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (Wiley, Chichester, 1990)

    Google Scholar 

  6. Y.F. Migal, in Anti-Abrasive Nanocoatings: Current and Future Applications, ed. by M. Aliofkhazarei (Woodhead Publishing Ltd., Cambridge, 2015), p. 385

    Chapter  Google Scholar 

  7. Y.F. Migal, V.I. Kolesnikov, I.V. Kolesnikov, Comput. Mater. Sci. 111, 503 (2016)

    Article  CAS  Google Scholar 

  8. W. Kohn, A.D. Becke, R.G. Parr, J. Phys. Chem. 100, 129 (1996)

    Article  Google Scholar 

  9. G. te Velde, F.M. Bickelhaupt, S.J.A. van Gisbergen, C.F. Guerra, E.J. Baerends, J.G. Snijders, T. Ziegler, J. Comput. Chem. 22, 931 (2001)

    Article  Google Scholar 

  10. V.I. Kolesnikov, A.T. Kozakov, Y.F. Migal, J. Frict. W. 31(1), 11 (2010)

    Article  Google Scholar 

  11. V.I. Kolesnikov, Y.F. Migal, I.V. Kolesnikov, E.S. Novikov, Dokl. Phys. Chem. 464, 194 (2015)

    Article  CAS  Google Scholar 

  12. Y.F. Migal, V.I. Kolesnikov, in: Advanced Materials—Techniques, Physics, Mechanics and Applications, ed. by I.A. Parinov, S.-H Chang, M.A. Jani. Springer Proceedings in Physics (Springer, Cham, 2017), p. 65

    Google Scholar 

  13. E.P. DeGarmo, J.T. Black, R.A. Kohser, Materials and Processes in Manufacturing, 10th edn. (Wiley, New Jersey, 2007)

    Google Scholar 

  14. W.R. Thomas, G.M. Leak, Nature 176, 29 (1955)

    Article  CAS  Google Scholar 

  15. Y.-L. Gao, X.-X. Xue, H. Yang, Acta Metall. Sin. (Engl. Lett.) 28, 931 (2015)

    Article  CAS  Google Scholar 

  16. Y.G. Yushkov, A.V. Tyunkov, E.M. Oks, D.B. Zolotukhin, J. Appl. Phys. 120, 23302 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (RSCF) (grant No. 16-19-10467, provided to the Rostov State Transport University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri F. Migal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Migal, Y.F., Kolesnikov, V.I. (2018). Diffusion Method of Steel Boriding Without Formation of Iron Borides. In: Parinov, I., Chang, SH., Gupta, V. (eds) Advanced Materials . PHENMA 2017. Springer Proceedings in Physics, vol 207. Springer, Cham. https://doi.org/10.1007/978-3-319-78919-4_8

Download citation

Publish with us

Policies and ethics