Skip to main content

Comparative Study of Cantilever Carbon Nanotube with Carbon Nanotube System

  • Conference paper
  • First Online:
Advanced Materials (PHENMA 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 207))

  • 950 Accesses

Abstract

Carbon nanotube (CNT) is the allotrope of carbon, which resembles a rolled up graphite sheet capped with a fullerene molecule. One such system is achieved by using intermediate material (such as polymers) between two nanotubes. This idea enabled the path for simplest nanotube system i.e. a double single walled carbon nanotube system (DSWNTS) which has two single walled carbon nanotubes, attached together by a continuous elastic medium. In this study, we investigated the comparison between the performance of a single walled carbon nanotube (SWCNT) and a DSWNTS. The governing equations are derived using modified couple stress theory (MCST) based on vibrational principle approach. Transverse deflection due to point load at the end of the cantilever is calculated using the finite element simulations and are compared with the analytical solution. Such a comparative study can be a base to understand the behaviour of CNT systems clearly and to know their feasibility to be used for sophisticated applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Iijima, Nature 34, 56 (1991)

    Article  Google Scholar 

  2. K.T. Lau, D. Hui, Compos. B 33(4), 263 (2002)

    Article  Google Scholar 

  3. E.T. Thostenson, Z. Ren, T.W. Chou, Compos. Sci. Technol. 61(13), 1899 (2001)

    Article  CAS  Google Scholar 

  4. M.S. Dresselhaus, G. Dresselhaus, R. Saito, Carbon 33(7), 883 (1995)

    Article  CAS  Google Scholar 

  5. J.P. Lu, Phys. Rev. Lett. 79(7), 1297 (1997)

    Article  CAS  Google Scholar 

  6. K.I. Tserpes, P. Papanikos, Compos. B 36(5), 468 (2005)

    Article  Google Scholar 

  7. S. Kirtania, D. Chakraborty, J. Reinf. Plast. Compos. 26(15), 1557 (2007)

    Article  CAS  Google Scholar 

  8. X. Lu, Z. Hu, Compos. B 43(4), 1902 (2012)

    Article  CAS  Google Scholar 

  9. J.H. Rangel, W. Brostow, V.M. Castano, Polimery 58(4), 276 (2013)

    Article  CAS  Google Scholar 

  10. C. Fang, A. Kumar, S. Mukherjee, J. Appl. Mech. 78, 034502 (2011)

    Article  Google Scholar 

  11. X.L. Gao, K. Li, Int. J. Solid Struct. 40, 7329 (2003)

    Article  Google Scholar 

  12. K.I. Tserpes, P. Papanikos, S.A. Tsirkas, Compos. B 37(7–8), 662 (2006)

    Article  Google Scholar 

  13. E.T. Thostenson, T.W. Chou, in Fracture of Nano and Engineering Materials and Structures, ed. by E.E. Gdoutos (Springer, Dordrecht, 2006), p. 95

    Google Scholar 

  14. C. Fang, A. Kumar, S. Mukherjee, Int. J. Solids Struct. 50(1), 49 (2013)

    Article  CAS  Google Scholar 

  15. S.I. Yengejeh, S.A. Kazemi, A. Ochsner, Compos. B 86, 95 (2016)

    Article  Google Scholar 

  16. H.A. Wu, Z.H. Sun, Q. Cheng, X.X. Wang, J. Phys. Conf. Ser. 61, 1266 (2007)

    Article  CAS  Google Scholar 

  17. M. Mir, A. Hosseini, G.H. Majzoobi, Comput. Mater. Sci. 43, 540 (2008)

    Article  CAS  Google Scholar 

  18. C. Li, T.W. Chou, Int. J. Solids Struct. 40(10), 2487 (2003)

    Article  Google Scholar 

  19. D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, J. Mech. Phys. Solids 51(8), 1477 (2003)

    Article  Google Scholar 

  20. S.K. Park, X.L. Gao, J. Micromech. Microeng. 16, 2355 (2006)

    Article  Google Scholar 

  21. S.K. Park, X.L. Gao, Z. Angew, Math. Phys. (ZAMP) 59, 904 (2008)

    Article  Google Scholar 

  22. M. Mohandes, A.R. Ghasemi, in Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science (2016), p. 1

    Google Scholar 

  23. T. Murmu, M.A. McCarthy, S. Adhikari, J. Appl. Phys. 111, 113511 (2012)

    Article  Google Scholar 

  24. T. Murmu, S. Adhikari, J. Appl. Phys. 108, 083514 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agrawal, S., Singh, B.K., Gupta, V., Gupta, V.K., Kankar, P.K. (2018). Comparative Study of Cantilever Carbon Nanotube with Carbon Nanotube System. In: Parinov, I., Chang, SH., Gupta, V. (eds) Advanced Materials . PHENMA 2017. Springer Proceedings in Physics, vol 207. Springer, Cham. https://doi.org/10.1007/978-3-319-78919-4_24

Download citation

Publish with us

Policies and ethics