Skip to main content

An FPGA/HMC-Based Accelerator for Resolution Proof Checking

  • Conference paper
  • First Online:
Applied Reconfigurable Computing. Architectures, Tools, and Applications (ARC 2018)

Abstract

Modern Boolean satisfiability solvers can emit proofs of unsatisfiability. There is substantial interest in being able to verify such proofs and also in using them for further computations. In this paper, we present an FPGA accelerator for checking resolution proofs, a popular proof format. Our accelerator exploits parallelism at the low level by implementing the basic resolution step in hardware, and at the high level by instantiating a number of parallel modules for proof checking. Since proof checking involves highly irregular memory accesses, we employ Hybrid Memory Cube technology for accelerator memory. The results show that while the accelerator is scalable and achieves speedups for all benchmark proofs, performance improvements are currently limited by the overhead of transitioning the proof into the accelerator memory.

This work was partially supported by the German Research Foundation (DFG) within the Collaborative Research Centre “On-The-Fly Computing” (SFB 901).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://fmv.jku.at/tracecheck/.

  2. 2.

    http://picocomputing.com/ac-510-superprocessor-module/.

  3. 3.

    www.satcompetition.org.

References

  1. Babb, J., Frank, M., Agarwal, A.: Solving graph problems with dynamic computation structures. In: Proceedings of SPIE: High-Speed Computing, Digital Signal Processing, and Filtering Using Reconfigurable Logic, vol. 2914, pp. 225–236 (1996)

    Google Scholar 

  2. Biere, A.: Picosat essentials. J. Satisf. Boolean Model. Comput. (JSAT) 4, 75–97 (2008)

    MATH  Google Scholar 

  3. Chatterjee, S., Mishchenko, A., Brayton, R., Kuehlmann, A.: On resolution proofs for combinational equivalence. In: 2007 44th ACM/IEEE Design Automation Conference, pp. 600–605, June 2007

    Google Scholar 

  4. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, STOC 1971, pp. 151–158. ACM, New York (1971)

    Google Scholar 

  5. Heule, M., Biere, A.: Proofs for satisfiability problems, vol. 55, pp. 1–22. College Publications (2015)

    Google Scholar 

  6. Hybrid Memory Cube Consortium: Hybrid memory cube specification 2.0 (2014)

    Google Scholar 

  7. Isenberg, T., Platzner, M., Wehrheim, H., Wiersema, T.: Proof-carrying hardware via inductive invariants. ACM Trans. Des. Autom. Electron. Syst. 22(4), 61:1–61:23 (2017)

    Article  Google Scholar 

  8. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6_1

    Chapter  Google Scholar 

  9. Nai, L., Hadidi, R., Sim, J., Kim, H., Kumar, P., Kim, H.: GraphPIM: enabling instruction-level PIM offloading in graph computing frameworks. In: 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 457–468, February 2017

    Google Scholar 

  10. Pawlowski, J.T.: Hybrid memory cube (HMC). In: 2011 IEEE Hot Chips 23 Symposium (HCS), pp. 1–24, August 2011

    Google Scholar 

  11. Skliarova, I., de Brito Ferrari, A.: Reconfigurable hardware SAT solvers: a survey of systems. IEEE Trans. Comput. 53(11), 1449–1461 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Hansmeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hansmeier, T., Platzner, M., Andrews, D. (2018). An FPGA/HMC-Based Accelerator for Resolution Proof Checking. In: Voros, N., Huebner, M., Keramidas, G., Goehringer, D., Antonopoulos, C., Diniz, P. (eds) Applied Reconfigurable Computing. Architectures, Tools, and Applications. ARC 2018. Lecture Notes in Computer Science(), vol 10824. Springer, Cham. https://doi.org/10.1007/978-3-319-78890-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78890-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78889-0

  • Online ISBN: 978-3-319-78890-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics