Skip to main content

Coastal Scenery Assessment by Means of a Fuzzy Logic Approach

  • Chapter
  • First Online:
Book cover Coastal Scenery

Part of the book series: Coastal Research Library ((COASTALRL,volume 26))

Abstract

Landscape is a major element affecting people’s life quality and coastal landscape evaluation is strongly rooted in the man-environment tradition. Coastal areas, all over the world, are under threat due to the conflicting requirements that rely on natural scenery of such as habitation, recreation, and industry. Since ‘coastal scenery’ is a natural resource, it has to be evaluated in an objective and quantitative way to provide a means of comparison against coastal activities and for environmental impact assessments. This chapter presents an evidence-based methodology called ‘Coastal Scenic Evaluation System (CSES)’. It is a technique that can be used not only for landscape preservation and protection, but also as scientific tool for envisaged coastal management and future development based upon plans formulated by an evidence-based approach. The results provide base-line information for a sound coastal management decision especially regarding intensive urban and industrial developments. CSES uses fuzzy logic to reduce subjectivity on decisions and obtain a quantitative evaluation of public survey research on 26 coastal scenic parameters having both physical and human perceptual characteristics. The weights of the scenic parameters were estimated by public survey questionnaires for Turkey, UK, Malta and Croatia and via consultations with coastal experts from the above mentioned four countries and Australia, Ireland, USA and Japan. Fuzzy logic mathematics was used to calculate a coastal scenic evaluation index (D) from the checklist of 26 scenic parameters by using the attributed weights of the parameters which enabled to categorize scenic values of the coastal areas into five distinct classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Appleton J (1975) Landscape evaluation: the theoretical vacuum. Trans Inst Br Geology 66:120–124

    Article  Google Scholar 

  • BCR (British Council Report) (2003) Coastal scenic assessment at selected areas: Turkey, UK, Malta. British council project final report, Ankara by Ergin, A., Williams, A.T., Micallef, A

    Google Scholar 

  • BCR (British Council Report) (2004) A new methodology for evaluating coastal scenery: fuzzy logic systems –a pilot study for Cirali. British Council Project Final Report, Ankara, by Ergin A, Williams AT, Micallef A

    Google Scholar 

  • Briggs DJ, France J (1980) Landscape evaluation: a comparative study. J Environ Manag 10:263–275

    Google Scholar 

  • Buyoff GJ, Arndt LK (1981) Interval scaling of landscape preference by direct and indirect measurement methods. Landsc Plan 8:257–267

    Article  Google Scholar 

  • Carlson AA (1977) On the possibility of quantifying scenic beauty. Landscape. Planning 4:131–172

    Google Scholar 

  • CCW (Countryside Council for Wales) (1996) The Welsh Landscape: our heritance and its future protection and enhancement

    Google Scholar 

  • CCW (Countryside Council for Wales) (2001) The LANDMAP Information System

    Google Scholar 

  • Clamp PE (1976) Evaluating English landscapes. Environ Plan A8:79–92

    Article  Google Scholar 

  • Countryside Commission (1987) Landscape assessment-a countryside commission approach. 18, 143pp

    Google Scholar 

  • Countryside Commission (1993) Landscape Assessment Guidance. CCP423, CC. Cheltenham, Gloc. UK

    Google Scholar 

  • Dakin S (2003) There is more to landscape than meets the eye: towards inclusive landscape assessment in resource and environmental management. Can Geogr 47(2):185–200

    Article  Google Scholar 

  • Daniel TC (1990) Measuring the quality of the natural environment: a psychophysical approach. Am Psychol 45(5):633–637

    Article  Google Scholar 

  • Elettheriadis N, Tsalikidis I, Manos B (1990) Coastal landscape preference evaluation: a comparison among tourists in Greece. Environ Manag 14(4):475–487

    Article  Google Scholar 

  • Ergin A, Karaesmen E, Uçar B (2011) A quantitative study for evaluation of coastal scenery. J Coast Res 27(6):1065–1075

    Article  Google Scholar 

  • Ergin A (2009) Case study; a holistic approach to beach management at Çıralı, Turkey: a model of conservation, integrated management and sustainable development. In: Williams AT, Micallef A (eds) Beach management: principles and practice. Earthscan, London, pp 355–358

    Google Scholar 

  • Ergin A, Williams AT, Micallef A (2006) Coastal scenery: appreciation and evaluation. J Coast Res 22:958–964

    Article  Google Scholar 

  • Ergin A, Karaesmen E, Gezer E, Uçar B, Karakaya ST (2005) Çıralı coastal scenic assessment using fuzzy logic mathematics. KAY Symposium 2005 (in Turkish)

    Google Scholar 

  • Ergin, A., Karaesmen, E., Guler, I., Guler, H. G. (2018) “Development of An Open-Source Computational Tool for Coastal Scenic Assessment Based on Fuzzy Logic,” 9th Coastal Engineering Symposium Proceedings, Turkish Chamber of Civil Engineers, Adana, Turkey.

    Google Scholar 

  • Ergin A, Karaesmen E, Williams AT, Micallef A (2004) A new methodology for evaluating coastal scenery: fuzzy logic systems. Area 36(4):367–386

    Article  Google Scholar 

  • Ergin A, Williams AT, Micallef A, Karakaya ST (2002) An innovative approach to coastal scenic evaluation Beach Management in the Mediterranean and Black Sea. MEDCOAST METU, Ankara, pp 215–226

    Google Scholar 

  • Fines KD (1968) Landscape evaluation. A research project in East Sussex. Reg Stud 2:41–55

    Article  Google Scholar 

  • Gezer E (2004) Coastal scenic evaluation: a pilot study for Çıralı. MSc thesis, Middle East Technical University, Ankara, Turkey. 110 p

    Google Scholar 

  • Kaplan R, Kaplan S (1989) The visual environment: public participation in design and planning. J Soc Issue 45(1):59–86

    Article  Google Scholar 

  • Karakaya ST (2004) Coastal scenic assessment using fuzzy logic approach. Middle East Technical University, Ankara, Turkey, MSc Thesis, 164 p

    Google Scholar 

  • Leopold LB (1969) Quantitative comparisons of some aesthetic factors among rivers. US Geol Survey Circ 620. 16 pp

    Google Scholar 

  • Linton DL (1968) The assessment of scenery as a natural resource. Scott Geogr Mag 84:219–238

    Google Scholar 

  • Linton DL (1982) Visual assessments of natural landscapes. West Geogr Ser 20:97–116

    Google Scholar 

  • Lowenthal D (1967) Environmental Perception and Behaviour [Edited versions of papers presented in a symposium at the 61st annual meeting of the Association of American Geographers, Columbus, Ohio, April 20, 1965]. University of Chicago Press, Chicago. 102 p

    Google Scholar 

  • Lowenthal D (1978) Finding valued landscapes. Institute of Environmental Sciences/University of Toronto, Toronto

    Google Scholar 

  • Penning-Rowsell EC (1982) A public preference evaluation of landscape quality. Reg Stud 16:97–112

    Article  Google Scholar 

  • Penning-Rowsell EC (1989) Landscape evaluation in practice – a survey of local authorities. Landsc Res 14(2):35–37

    Article  Google Scholar 

  • Robinson DG (1976) Landscape Evolution: the Landscape Evaluation Research Project. 1970–75, Manchester University, UK

    Google Scholar 

  • Uçar B (2004) Coastal scenic evaluation by application of fuzzy logic mathematics. MSc thesis. Middle East Technical University, Ankara, Turkey. 115 p

    Google Scholar 

  • Van der Meulen F (1997) History and Culture as expressed in the landscape seen from an Ecological Viewpoint. Science, Religion and the Environment Symposium II: The Black Sea in Crisis, pers comm

    Google Scholar 

  • Williams AT, Khatabi A (2015) Beach scenery, Nador, Morocco. J Coast Conserv 19(5):743–755

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–335

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşen Ergin .

Editor information

Editors and Affiliations

Appendices

CSES Open-Source Computational Tool

Coastal scenic evaluation system (CSES) is re-implemented in MATLAB environment in Ergin et al. (2018). The developed code ‘CSES 2018 V1’ is presented as an open-source computational tool for the coastal scenic evaluation system with User’s Manual and with an example case study on the following website: http://cses.ce.metu.edu.tr/

Addendum

For different coast sites the results of final assessment matrices (R) obtained depend on membership grading via membership matrices and weights of parameters as well as graded attributes. The entry with maximum entry value of the final assessment matrix R, as membership degree can be accepted as an evaluation state of the coastal site. Yet, considering all sites together for further comparison and for normal (Gaussian) analysis a D-value is defined. D-Values to categorize the scenery of coastal sites are evaluated on statistically described attribute values in terms of weighted areas. So, D value does not change linearly with respect to change of attributes directly when weights of parameters and membership grading remain constant for some situations. Since, D values are evaluated on areas formed by the entries of the final assessment matrices where ticked attributes with 1 and 5 are given weights as –2 and 2, respectively. The ticked attributes 3 and 4 have assumed weights as –1 and 1; and for ticked attribute 3, weight is 0. The idea here is to enhance the results on both ends firstly for preservation and protection of the coastal sites.

D – Values defined in this study depend on weights, and the membership matrices, Mi of the parameters obtained after expert decisions during the BCR and are listed in Appendix 1. Site assessments are time dependent, so D- value is not an intrinsic quantity. They are open to changes in future with further researches and coastal assessment surveys.

Appendices

4.1.1 Appendix 1: Membership-Grade Matrices (Mi) of the 26 Scenic Parameters

4.1.1.1 Scenic Parameters

M

Physical parameters

1

Cliff

Height (H)

2

Slope

3

Special features

4

Beach face

Type

5

Width (W)

6

Colour

7

Rocky shore

Slope

8

Extent

9

Roughness

10

Dunes

11

Valley

12

Skyline landforms

13

Tides

14

Coastal landscape features

15

Vistas

16

Water colour & clarity

17

Vegetation cover

18

Vegetation debris

 

Human parameters

19

Disturbance factor (noise)

20

Litter

21

Sewage (discharge evidence)

22

Non-built environment

23

Built environment

24

Access type

25

Skyline

26

Utilities

4.1.2 Appendix 2: Membership-Grade Matrices

\( {M}_1=\left[\begin{array}{ccccc}1.0& 0.0& 0.0& 0.0& 0.0\\ {}0.0& 1.0& 0.3& 0.0& 0.0\\ {}0.0& 0.3& 1.0& 0.3& 0.0\\ {}0.0& 0.0& 0.5& 1.0& 0.5\\ {}0.0& 0.0& 0.0& 0.5& 1.0\end{array}\right] \)

\( {M}_2=\left[\begin{array}{ccccc}1.0& 0.0& 0.0& 0.0& 0.0\\ {}0.0& 1.0& 0.5& 0.0& 0.0\\ {}0.0& 0.5& 1.0& 0.5& 0.0\\ {}0.0& 0.0& 0.5& 1.0& 0.5\\ {}0.0& 0.0& 0.0& 0.5& 1.0\end{array}\right] \)

\( {M}_3=\left[\begin{array}{ccccc}1.0& 0.0& 0.0& 0.0& 0.0\\ {}0.0& 1.0& 0.3& 0.0& 0.0\\ {}0.0& 0.0& 1.0& 0.3& 0.0\\ {}0.0& 0.0& 0.0& 1.0& 0.3\\ {}0.0& 0.0& 0.0& 0.0& 1.0\end{array}\right] \)

\( {M}_4=\left[\begin{array}{ccccc}1.0& 0.0& 0.0& 0.0& 0.0\\ {}0.0& 1.0& 0.0& 0.0& 0.0\\ {}0.0& 0.0& 1.0& 0.0& 0.0\\ {}0.0& 0.0& 0.0& 1.0& 0.0\\ {}0.0& 0.0& 0.0& 0.0& 1.0\end{array}\right] \)

\( {M}_5=\left[\begin{array}{ccccc}1.0& 0.0& 0.0& 0.0& 0.0\\ {}0.0& 1.0& 0.0& 0.0& 0.0\\ {}0.0& 0.2& 1.0& 0.2& 0.0\\ {}0.0& 0.0& 0.2& 1.0& 0.6\\ {}0.0& 0.0& 0.0& 0.6& 1.0\end{array}\right] \)

\( {M}_6=\left[\begin{array}{ccccc}1.0& 0.0& 0.0& 0.0& 0.0\\ {}0.0& 1.0& 0.0& 0.0& 0.0\\ {}0.0& 0.0& 1.0& 0.6& 0.0\\ {}0.0& 0.0& 0.6& 1.0& 0.0\\ {}0.0& 0.0& 0.0& 0.0& 1.0\end{array}\right] \)

\( {M}_7=\left[\begin{array}{ccccc}1.0& 0.0& 0.0& 0.0& 0.0\\ {}0.0& 1.0& 0.5& 0.0& 0.0\\ {}0.0& 0.5& 1.0& 0.5& 0.0\\ {}0.0& 0.0& 0.5& 1.0& 0.5\\ {}0.0& 0.0& 0.0& 0.2& 1.0\end{array}\right] \)

\( {M}_8=\left[\begin{array}{ccccc}1.0& 0.0& 0.0& 0.0& 0.0\\ {}0.0& 1.0& 0.2& 0.0& 0.0\\ {}0.0& 0.2& 1.0& 0.5& 0.0\\ {}0.0& 0.0& 0.5& 1.0& 0.4\\ {}0.0& 0.0& 0.0& 0.4& 1.0\end{array}\right] \)

\( {M}_9=\left[\begin{array}{ccccc}1.0& 0.0& 0.0& 0.0& 0.0\\ {}0.0& 1.0& 0.1& 0.0& 0.0\\ {}0.0& 0.1& 1.0& 0.6& 0.0\\ {}0.0& 0.0& 0.6& 1.0& 0.5\\ {}0.0& 0.0& 0.0& 0.5& 1.0\end{array}\right] \)

\( {M}_{10}=\left[\begin{array}{ccccc}1.0& 0.0& 0.0& 0.0& 0.0\\ {}0.0& 1.0& 0.0& 0.0& 0.0\\ {}0.0& 0.0& 1.0& 0.0& 0.0\\ {}0.0& 0.0& 0.0& 1.0& 0.0\\ {}0.0& 0.0& 0.0& 0.0& 1.0\end{array}\right] \)

\( {M}_{11}=\left[\begin{array}{ccccc}1.0& 0.0& 0.0& 0.0& 0.0\\ {}0.0& 1.0& 0.0& 0.0& 0.0\\ {}0.0& 0.0& 1.0& 0.0& 0.0\\ {}0.0& 0.0& 0.0& 1.0& 0.1\\ {}0.0& 0.0& 0.0& 0.1& 1.0\end{array}\right] \)

\( {M}_{12}=\left[\begin{array}{ccccc}1.0& 0.2& 0.0& 0.0& 0.0\\ {}0.0& 1.0& 0.3& 0.0& 0.0\\ {}0.0& 0.6& 1.0& 0.6& 0.0\\ {}0.0& 0.0& 0.6& 1.0& 0.2\\ {}0.0& 0.0& 0.0& 0.2& 1.0\end{array}\right] \)

\( {M}_{13}=\left[\begin{array}{ccccc}1.0& 0.0& 0.0& 0.0& 0.0\\ {}0.0& 0.0& 0.0& 0.0& 0.0\\ {}0.0& 0.0& 1.0& 0.0& 0.0\\ {}0.0& 0.0& 0.0& 0.0& 0.0\\ {}0.0& 0.0& 0.0& 0.0& 1.0\end{array}\right] \)

\( {M}_{14}=\left[\begin{array}{ccccc}1.0& 0.2& 0.0& 0.0& 0.0\\ {}0.0& 1.0& 0.2& 0.0& 0.0\\ {}0.0& 0.0& 1.0& 0.2& 0.0\\ {}0.0& 0.0& 0.0& 1.0& 0.2\\ {}0.0& 0.0& 0.0& 0.0& 1.0\end{array}\right] \)

\( {\mathrm{M}}_{15}=\left[\begin{array}{ccccc}1.0& 0.0& 0.0& 0.0& 0.0\\ {}0.0& 1.0& 0.0& 0.0& 0.0\\ {}0.0& 0.0& 0.0& 0.0& 0.0\\ {}0.0& 0.0& 0.0& 1.0& 0.3\\ {}0.0& 0.0& 0.0& 0.3& 1.0\end{array}\right] \)

\( {M}_{16}=\left[\begin{array}{ccccc}1.0& 0.2& 0.0& 0.0& 0.0\\ {}0.2& 1.0& 0.2& 0.0& 0.0\\ {}0.0& 0.5& 1.0& 0.5& 0.0\\ {}0.0& 0.0& 0.5& 1.0& 0.2\\ {}0.0& 0.0& 0.0& 0.2& 1.0\end{array}\right] \)

\( {M}_{17}=\left[\begin{array}{ccccc}1.0& 0.2& 0.0& 0.0& 0.0\\ {}0.2& 1.0& 0.2& 0.0& 0.0\\ {}0.0& 0.2& 1.0& 0.2& 0.0\\ {}0.0& 0.0& 0.2& 1.0& 0.2\\ {}0.0& 0.0& 0.0& 0.2& 1.0\end{array}\right] \)

\( {M}_{18}=\left[\begin{array}{ccccc}1.0& 0.2& 0.0& 0.0& 0.0\\ {}0.2& 1.0& 0.0& 0.0& 0.0\\ {}0.0& 0.0& 1.0& 0.2& 0.0\\ {}0.0& 0.0& 0.2& 1.0& 0.0\\ {}0.0& 0.0& 0.0& 0.2& 1.0\end{array}\right] \)

\( {M}_{19}=\left[\begin{array}{ccccc}1.0& 0.0& 0.0& 0.0& 0.0\\ {}0.2& 1.0& 0.0& 0.2& 0.0\\ {}0.0& 0.0& 0.0& 0.0& 0.0\\ {}0.0& 0.2& 0.0& 1.0& 0.2\\ {}0.0& 0.0& 0.0& 0.2& 1.0\end{array}\right] \)

\( {M}_{20}=\left[\begin{array}{ccccc}1.0& 0.2& 0.0& 0.0& 0.0\\ {}0.2& 1.0& 0.2& 0.0& 0.0\\ {}0.0& 0.2& 1.0& 0.2& 0.0\\ {}0.0& 0.0& 0.2& 1.0& 0.2\\ {}0.0& 0.0& 0.0& 0.2& 1.0\end{array}\right] \)

\( {M}_{21}=\left[\begin{array}{ccccc}1.0& 0.0& 0.2& 0.0& 0.0\\ {}0.0& 0.0& 0.0& 0.0& 0.0\\ {}0.3& 0.0& 1.0& 0.0& 0.1\\ {}0.0& 0.0& 0.0& 0.0& 0.0\\ {}0.0& 0.0& 0.2& 0.0& 1.0\end{array}\right] \)

\( {M}_{22}=\left[\begin{array}{ccccc}1.0& 0.0& 0.2& 0.0& 0.0\\ {}0.0& 0.0& 0.0& 0.0& 0.0\\ {}0.2& 0.0& 1.0& 0.0& 0.2\\ {}0.0& 0.0& 0.0& 0.0& 0.0\\ {}0.0& 0.0& 0.2& 0.0& 1.0\end{array}\right] \)

\( {M}_{23}=\left[\begin{array}{ccccc}1.0& 0.0& 0.0& 0.0& 0.0\\ {}0.0& 1.0& 0.2& 0.0& 0.0\\ {}0.0& 0.2& 1.0& 0.2& 0.0\\ {}0.0& 0.0& 0.3& 1.0& 0.0\\ {}0.0& 0.0& 0.0& 0.0& 1.0\end{array}\right] \)

\( {M}_{24}=\left[\begin{array}{ccccc}1.0& 0.2& 0.0& 0.0& 0.0\\ {}0.2& 1.0& 0.0& 0.2& 0.0\\ {}0.0& 0.0& 0.0& 0.0& 0.0\\ {}0.0& 0.2& 0.0& 1.0& 0.2\\ {}0.0& 0.0& 0.0& 0.2& 1.0\end{array}\right] \)

\( {M}_{25}=\left[\begin{array}{ccccc}1.0& 0.4& 0.0& 0.0& 0.0\\ {}0.4& 1.0& 0.2& 0.0& 0.0\\ {}0.0& 0.4& 1.0& 0.2& 0.0\\ {}0.0& 0.0& 0.4& 1.0& 0.0\\ {}0.0& 0.0& 0.0& 0.0& 1.0\end{array}\right] \)

\( {M}_{26}=\left[\begin{array}{ccccc}1.0& 0.0& 0.0& 0.0& 0.0\\ {}0.2& 1.0& 0.0& 0.0& 0.0\\ {}0.0& 0.2& 1.0& 0.0& 0.0\\ {}0.0& 0.0& 0.2& 1.0& 0.0\\ {}0.0& 0.0& 0.0& 0.2& 1.0\end{array}\right] \)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ergin, A. (2019). Coastal Scenery Assessment by Means of a Fuzzy Logic Approach. In: Rangel-Buitrago, N. (eds) Coastal Scenery. Coastal Research Library, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-78878-4_4

Download citation

Publish with us

Policies and ethics