Skip to main content

Heuristic, Branch-and-Bound Solver and Improved Space Reduction for the Median of Permutations Problem

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10765))

Included in the following conference series:

  • 632 Accesses

Abstract

Given a set \(\mathcal {A}\subseteq \mathbb {S}_n\) of m permutations of \(\{1,2,\ldots ,n\}\) and a distance function d, the median problem consists of finding a permutation \(\pi ^*\) that is the “closest” of the m given permutations. Here, we study the problem under the Kendall-\(\tau \) distance which counts the number of order disagreements between pairs of elements of permutations. In this article, we explore this NP-hard problem using three different approaches: a well parameterized heuristic, an improved space search reduction technique and a refined branch-and-bound solver.

This work is supported by a grant from the National Sciences and Engineering Research Council of Canada (NSERC) through an Individual Discovery Grant RGPIN-2016-04576 (Hamel) and by Fonds Nature et Technologies (FRQNT) through a Doctoral scholarship (Milosz).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that all appendices and the source code (Java) for testing can be found online at http://www-etud.iro.umontreal.ca/~miloszro/iwoca/iwoca.html.

  2. 2.

    More detailed explanations and some examples for these Major Order Theorems can be found in Sect. 4 of [18].

References

  1. Ailon, N., Charikar, M., Newman, N.: Aggregating inconsistent information: ranking and clustering. J. ACM 55(5), 1–27 (2008)

    Article  MathSciNet  Google Scholar 

  2. Betzler, N., Bredereck, R., Niedermeier, R.: Theoretical and empirical evaluation of data reduction for exact Kemeny Rank Aggregation. Auton. Agent. Multi-Agent Syst. 28, 721–748 (2014)

    Article  Google Scholar 

  3. Betzler, N., et al.: Average parameterization and partial kernelization for computing medians. J. Comput. Syst. Sci. 77(4), 774–789 (2011)

    Article  MathSciNet  Google Scholar 

  4. Biedl, T., Brandenburg, F.J., Deng, X.: Crossings and permutations. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11618058_1

    Chapter  Google Scholar 

  5. Blin, G., Crochemore, M., Hamel, S., Vialette, S.: Median of an odd number of permutations. Pure Math. Appl. 21(2), 161–175 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Conitzer, V., Davenport, A., Kalagnanam, J.: Improved bounds for computing Kemeny rankings. In: Proceedings of the 21st Conference on Artificial Intelligence, AAAI 2006, vol. 1, pp. 620–626 (2006)

    Google Scholar 

  7. Davenport, A., Kalagnanam, J.: A computational study of the Kemeny rule for preference aggregation. In: Proceedings of the 19th National Conference on Artificial Intelligence, AAAI 2004, pp. 697–702 (2004)

    Google Scholar 

  8. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: Proceedings of the 10th WWW, pp. 613–622 (2001)

    Google Scholar 

  9. Fisher, R.A., Yates, F.: Statistical Tables for Biological, Agricultural and Medical Research, 3rd edn, pp. 26–27. Oliver & Boyd, London (1948)

    Google Scholar 

  10. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  11. Karpinski, M., Schudy, W.: Faster algorithms for feedback arc set tournament, kemeny rank aggregation and betweenness tournament. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 3–14. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17517-6_3

    Chapter  MATH  Google Scholar 

  12. Kemeny, J.: Mathematics without numbers. Daedalus 88, 577–591 (1959)

    Google Scholar 

  13. Kendall, M.: A new measure of rank correlation. Biometrika 30, 81–89 (1938)

    Article  Google Scholar 

  14. Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In: STOC 2007, pp. 95–103 (2007)

    Google Scholar 

  15. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  16. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Marshall, N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21–6, 1087–1092 (1953)

    Article  Google Scholar 

  17. Ali, A., Meilă, M.: Experiments with Kemeny ranking: what works when? Math. Soc. Sci. 64, 28–40 (2012)

    Article  MathSciNet  Google Scholar 

  18. Milosz, R., Hamel, S.: Medians of permutations: building constraints. In: Govindarajan, S., Maheshwari, A. (eds.) CALDAM 2016. LNCS, vol. 9602, pp. 264–276. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29221-2_23

    Chapter  Google Scholar 

  19. Milosz, R., Hamel, S.: Space reduction constraints for the median of permutations problem. J. Discret. Appl. Math. (submitted)

    Google Scholar 

  20. Nishimura, N., Simjour, N.: Parameterized enumeration of (locally-) optimal aggregations. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 512–523. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40104-6_44

    Chapter  Google Scholar 

  21. van Zuylen, A., Williamson, D.P.: Deterministic pivoting algorithms for constrained ranking and clustering problems. Math. Oper. Res. 34(3), 594–620 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thanks our anonymous reviewers for their careful and inspiring comments. Be sure that the suggestions that were not included here, due to time and space constraints, will be integrate in the journal version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Hamel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Milosz, R., Hamel, S. (2018). Heuristic, Branch-and-Bound Solver and Improved Space Reduction for the Median of Permutations Problem. In: Brankovic, L., Ryan, J., Smyth, W. (eds) Combinatorial Algorithms. IWOCA 2017. Lecture Notes in Computer Science(), vol 10765. Springer, Cham. https://doi.org/10.1007/978-3-319-78825-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78825-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78824-1

  • Online ISBN: 978-3-319-78825-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics