Skip to main content

Complexity Dichotomies for the Minimum \(\mathcal {F}\)-Overlay Problem

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10765))

Included in the following conference series:

Abstract

For a (possibly infinite) fixed family of graphs \(\mathcal {F}\), we say that a graph G overlays \(\mathcal {F}\) on a hypergraph H if V(H) is equal to V(G) and the subgraph of G induced by every hyperedge of H contains some member of \(\mathcal {F}\) as a spanning subgraph. While it is easy to see that the complete graph on |V(H)| overlays \(\mathcal {F}\) on a hypergraph H whenever the problem admits a solution, the Minimum \(\mathcal {F}\)-Overlay problem asks for such a graph with the minimum number of edges. This problem allows to generalize some natural problems which may arise in practice. For instance, if the family \(\mathcal {F}\) contains all connected graphs, then Minimum \(\mathcal {F}\)-Overlay corresponds to the Minimum Connectivity Inference problem (also known as Subset Interconnection Design problem) introduced for the low-resolution reconstruction of macro-molecular assembly in structural biology, or for the design of networks.

Our main contribution is a strong dichotomy result regarding the polynomial vs. NP-hard status with respect to the considered family \(\mathcal {F}\). Roughly speaking, we show that the easy cases one can think of (e.g. when edgeless graphs of the right sizes are in \(\mathcal {F}\), or if \(\mathcal {F}\) contains only cliques) are the only families giving rise to a polynomial problem: all others are NP-complete. We then investigate the parameterized complexity of the problem and give similar sufficient conditions on \(\mathcal {F}\) that give rise to \(\mathsf{W} [1]\)-hard, \(\mathsf{W} [2]\)-hard or \(\mathsf{FPT} \) problems when the parameter is the size of the solution. This yields an FPT/\(\mathsf{W} [1]\)-hard dichotomy for a relaxed problem, where every hyperedge of H must contain some member of \(\mathcal {F}\) as a (non necessarily spanning) subgraph.

This work was partially funded by ‘Projet de Recherche Exploratoire’, Inria, Improving inference algorithms for macromolecular structure determination and ANR under contract STINT ANR-13-BS02-0007.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The \(\mathcal {F}\)-Recognition problem asks, given a graph F, whether \(F \in \mathcal {F}\).

  2. 2.

    Roughly speaking, each element of the universe represents a vertex of the graph, and for each vertex, create a set with the elements corresponding to its closed neighborhood.

References

  1. Agarwal, D., Caillouet, C., Coudert, D., Cazals, F.: Unveiling contacts within macro-molecular assemblies by solving minimum weight connectivity inference problems. Mol. Cell. Proteomics 14, 2274–2284 (2015)

    Article  Google Scholar 

  2. Angluin, D., Aspnes, J., Reyzin, L.: Inferring social networks from outbreaks. In: Hutter, M., Stephan, F., Vovk, V., Zeugmann, T. (eds.) ALT 2010. LNCS (LNAI), vol. 6331, pp. 104–118. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16108-7_12

    Chapter  MATH  Google Scholar 

  3. Brandes, U., Cornelsen, S., Pampel, B., Sallaberry, A.: Blocks of hypergraphs. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS, vol. 6460, pp. 201–211. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19222-7_21

    Chapter  Google Scholar 

  4. Chen, Y., Lin, B.: The constant inapproximability of the parameterized dominating set problem. FOCS 2016, 505–514 (2016)

    MathSciNet  Google Scholar 

  5. Chockler, G., Melamed, R., Tock, Y., Vitenberg, R.: Constructing scalable overlays for pub-sub with many topics. In: PODC 2007, pp. 109–118. ACM (2007)

    Google Scholar 

  6. Cohen, N., Mazauric, D., Sau, I., Watrigant, R.: Complexity dichotomies for the minimum F-overlay problem. CoRR, abs/1703.05156 (2017)

    Google Scholar 

  7. Conitzer, V., Derryberry, J., Sandholm, T.: Combinatorial auctions with structured item graphs. In: AAAI 2004, pp. 212–218 (2004)

    Google Scholar 

  8. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-53622-3

    Book  MATH  Google Scholar 

  9. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4471-5559-1

    Book  MATH  Google Scholar 

  10. Du, D.Z., Kelly, D.F.: On complexity of subset interconnection designs. J. Global Optim. 6(2), 193–205 (1995)

    Article  MathSciNet  Google Scholar 

  11. Ding-Zhu, D., Miller, Z.: Matroids and subset interconnection design. SIAM J. Discrete Math. 1(4), 416–424 (1988)

    Article  MathSciNet  Google Scholar 

  12. Fan, H., Hundt, C., Wu, Y.-L., Ernst, J.: Algorithms and implementation for interconnection graph problem. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 201–210. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85097-7_19

    Chapter  MATH  Google Scholar 

  13. Fan, H., Wu, Y.-L.: Interconnection graph problem. In: FCS 2008, pp. 51–55 (2008)

    Google Scholar 

  14. Hosoda, J., Hromkovic, J., Izumi, T., Ono, H., Steinov, M., Wada, K.: On the approximability and hardness of minimum topic connected overlay and its special instances. Theoret. Comput. Sci. 429, 144–154 (2012)

    Article  MathSciNet  Google Scholar 

  15. Johnson, D.S., Pollak, H.O.: Hypergraph planarity and the complexity of drawing Venn diagrams. J. Graph Theory 11(3), 309–325 (1987)

    Article  MathSciNet  Google Scholar 

  16. Klemz, B., Mchedlidze, T., Nöllenburg, M.: Minimum tree supports for hypergraphs and low-concurrency Euler diagrams. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 265–276. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08404-6_23

    Chapter  Google Scholar 

  17. Korach, E., Stern, M.: The clustering matroid and the optimal clustering tree. Math. Program. 98(1), 385–414 (2003)

    Article  MathSciNet  Google Scholar 

  18. Onus, M., Richa, A.W.: Minimum maximum-degree publish-subscribe overlay network design. IEEE/ACM Trans. Netw. 19(5), 1331–1343 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorian Mazauric .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cohen, N., Havet, F., Mazauric, D., Sau, I., Watrigant, R. (2018). Complexity Dichotomies for the Minimum \(\mathcal {F}\)-Overlay Problem. In: Brankovic, L., Ryan, J., Smyth, W. (eds) Combinatorial Algorithms. IWOCA 2017. Lecture Notes in Computer Science(), vol 10765. Springer, Cham. https://doi.org/10.1007/978-3-319-78825-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78825-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78824-1

  • Online ISBN: 978-3-319-78825-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics