Skip to main content

The Basic Ideas of Obtaining MLEs: A Known Dispersion

  • Chapter
  • First Online:
Book cover Bilinear Regression Analysis

Part of the book series: Lecture Notes in Statistics ((LNS,volume 220))

  • 1456 Accesses

Abstract

Useful vector space decompositions are introduced. The classical Gauss-Markov model is used to illustrate the application of space decompositions. The approach is extended to cover tensor space decompositions which is a basic tool when considering bilinear regression models. The decompositions are illustrated in figures where one can follow how maximum likelihood estimators are obtained by projecting on appropriate subspaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken, A. C. (1936). On least squares and linear combinations of observations. Proceedings of the Royal Society of Edinburgh, Section A, 55, 42–48.

    Article  Google Scholar 

  • Alalouf, I. S. (1978). An explicit treatment of the general linear model with singular covariance matrix. Sankhy \(\bar {a}\) , Series B, 40, 65–73.

    MathSciNet  MATH  Google Scholar 

  • Baksalary, J. K., & Kala, R. (1979). Best linear unbiased estimation in the restricted general linear model. Mathematische Operationsforschung und Statistik, Series Statistics, 10, 27–35.

    Article  MathSciNet  Google Scholar 

  • Baksalary, J. K., & Kala, R. (1981). Linear transformations preserving best linear unbiased estimators in a general Gauss-Markoff model. Annals of Statistics, 9, 913–916.

    Article  MathSciNet  Google Scholar 

  • Baksalary, J. K., Rao, C. R., & Markiewicz, A. (1992). A study of the influence of the “natural restrictions” on estimation problems in the singular Gauss-Markov model. The Journal of Statistical Planning and Inference, 31, 335–351.

    Article  MathSciNet  Google Scholar 

  • Baksalary, O. M., & Trenkler, G. (2011). Between OLSE and BLUE. Australian and New Zealand Journal of Statistics, 53, 289–303.

    Article  MathSciNet  Google Scholar 

  • Beganu, G. (2009). Some properties of the best linear unbiased estimators in multivariate growth curve models. RACSAM - Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 103, 161–166.

    MathSciNet  MATH  Google Scholar 

  • Ben-Israel, A., & Greville, T. N. E. (2003). Generalized inverses. Theory and applications. CMS books in mathematics/Ouvrages de Mathématiques de la SMC (Vol. 15, 2nd ed.). New York: Springer.

    Google Scholar 

  • Drygas, H. (1970). The coordinate-free approach to Gauss-Markov estimation. Lecture notes in operations research and mathematical systems (Vol. 40). New York: Springer.

    Book  Google Scholar 

  • Eaton, M. L. (1970). Gauss-Markov estimation for multivariate linear models: A coordinate free approach. Annals of Mathematical Statistics, 41, 528–538.

    Article  MathSciNet  Google Scholar 

  • Eaton, M. L. (2007). William H. Kruskal and the development of coordinate-free methods. Statistical Science, 22, 264–265.

    Article  MathSciNet  Google Scholar 

  • Graybill, F. A. (1961). An introduction to linear statistical models. McGraw-Hill series in probability and statistics (Vol. I). New York: McGraw-Hill.

    Google Scholar 

  • Graybill, F. A. (1976). Theory and application of the linear model. North Scituate: Duxbury Press.

    MATH  Google Scholar 

  • Haslett, S. J., Isotalo, J., Liu, Y., & Puntanen, S. (2014). Equalities between OLSE, BLUE and BLUP in the linear model. Statistical Papers, 55, 543–561.

    Article  MathSciNet  Google Scholar 

  • Hinkelmann, K., & Kempthorne, O. (2005). Design and analysis of experiments. Vol. 2. Advanced experimental design. Wiley series in probability and statistics. Hoboken: Wiley.

    Book  Google Scholar 

  • Hinkelmann, K., & Kempthorne, O. (2008). Design and analysis of experiments. Vol. 1. Introduction to experimental design. Wiley series in probability and statistics (2nd ed.). Hoboken: Wiley.

    MATH  Google Scholar 

  • Hu, J. (2010). Properties of the explicit estimators in the extended growth curve model. Statistics: A Journal of Theoretical and Applied Statistics, 44, 477–492.

    Article  MathSciNet  Google Scholar 

  • Kempthorne, O. (1952). The design and analysis of experiments. New York/London: Wiley/Chapman & Hall.

    Book  Google Scholar 

  • Kollo, T., & von Rosen, D. (2005). Advanced multivariate statistics with matrices. Mathematics and its applications (Vol. 579). Dordrecht: Springer.

    MATH  Google Scholar 

  • Kruskal, W. (1961). The coordinate-free approach to Gauss-Markov estimation, and its application to missing and extra observations. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability (Vol. I, pp. 435–451). Berkeley: University of California Press.

    Google Scholar 

  • Nordström, K. (1985). On a decomposition of the singular Gauss-Markov model. In: Linear statistical inference (Poznan, 1984). Lecture notes in statistics (Vol. 35, pp. 231–245). Berlin: Springer.

    Chapter  Google Scholar 

  • Puntanen, S., & Styan, G. P. H. (1989). The equality of the ordinary least squares estimator and the best linear unbiased estimator. With comments by Oscar Kempthorne and Shayle R. Searle and a reply by the authors. The American Statistician, 43, 153–164.

    MathSciNet  Google Scholar 

  • Puntanen, S., Styan, G. P. H., & Isotalo, J. (2011). Matrix tricks for linear statistical models. Our personal top twenty. Heidelberg: Springer.

    Book  Google Scholar 

  • Rao, C. R. (1973). Linear statistical inference and its applications. Wiley series in probability and mathematical statistics (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  • Rao, C. R., & Mitra, S. K. (1971). Generalized inverse of matrices and its applications. New York: Wiley.

    MATH  Google Scholar 

  • Scheffé, H. (1959). The analysis of variance. New York/London: Wiley/Chapman & Hall.

    MATH  Google Scholar 

  • Searle, S. R. (1971). Linear models. New York: Wiley.

    MATH  Google Scholar 

  • Searle, S. R. (1987). Linear models for unbalanced data. Wiley series in probability and mathematical statistics: Applied probability and statistics. New York: Wiley.

    Google Scholar 

  • Seber, G. A. F. (1966). The linear hypothesis: A general theory. Griffin’s statistical monographs & courses (Vol. 19). London: Charles Griffin.

    Google Scholar 

  • Sengupta, D., & Jammalamadaka, S. R. (2003). Linear models. An integrated approach. Series on multivariate analysis. (Vol. 6). River Edge: World Scientific.

    Book  Google Scholar 

  • Song, G. J. (2011). On the best linear unbiased estimator and the linear sufficiency of a general growth curve model. The Journal of Statistical Planning and Inference, 141, 2700–2710.

    Article  MathSciNet  Google Scholar 

  • Song, G. J., & Wang, Q. W. (2014). On the weighted least-squares, the ordinary least-squares and the best linear unbiased estimators under a restricted growth curve model. Statistical Papers, 55, 375–392.

    Article  MathSciNet  Google Scholar 

  • Stone, M. (1977). A unified approach to coordinate-free multivariate analysis. Annals of the Institute of Statistical Mathematics, 29, 43–57.

    Article  MathSciNet  Google Scholar 

  • Stone, M. (1987). Coordinate-free multivariable statistics. An illustrated geometric progression from Halmos to Gauss and Bayes. Oxford statistical science series (Vol. 2). New York: The Clarendon Press/Oxford University Press.

    MATH  Google Scholar 

  • Tian, Y., Beisiegel, M., Dagenais, E., & Haines, C. (2008). On the natural restrictions in the singular Gauss-Markov model. Statistical Papers, 49, 553–564.

    Article  MathSciNet  Google Scholar 

  • Tian, Y., & Takane, Y. (2007). Some algebraic and statistical properties of WLSEs under a general growth curve model. Electronic Journal of Linear Algebra, 16, 187–203.

    MathSciNet  MATH  Google Scholar 

  • Tian, Y., & Takane, Y. (2009). On consistency, natural restrictions and estimability under classical and extended growth curve models. The Journal of Statistical Planning and Inference, 139, 2445–2458.

    Article  MathSciNet  Google Scholar 

  • Wong, C. S. (1993). Linear models in a general parametric form. Sankhy \(\bar {a}\) , Series A, 55, 130–149.

    Google Scholar 

  • Xu, L.-W., & Wang, S.-G. (2011). Linear sufficiency in a general growth curve model. Linear Algebra and Its Applications, 434, 593–604.

    Article  MathSciNet  Google Scholar 

  • Zhang, B. X., & Zhu, X. H. (2000). Gauss-Markov and weighted least-squares estimation under a general growth curve model. Linear Algebra and Its Applications, 321, 387–398.

    Article  MathSciNet  Google Scholar 

  • Zhang, S., Fang, Z., Qin, H., & Han, L. (2011). Characterization of admissible linear estimators in the growth curve model with respect to inequality constraints. Journal of the Korean Statistical Society, 40, 173–179.

    Article  MathSciNet  Google Scholar 

  • Zhang, S., & Gui, W. (2008). Admissibility of linear estimators in a growth curve model subject to an incomplete ellipsoidal restriction. Acta Mathematica Scientia. Series B. English Edition, 28, 194–200.

    Google Scholar 

  • Zhang, S., Gui, W., & Liu, G. (2009). Characterization of admissible linear estimators in the general growth curve model with respect to an incomplete ellipsoidal restriction. Linear Algebra and Its Applications, 431, 120–131.

    Article  MathSciNet  Google Scholar 

  • Zyskind, G., & Martin, F. B. (1969). On best linear estimation and general Gauss-Markov theorem in linear models with arbitrary nonnegative covariance structure. SIAM Journal on Applied Mathematics, 17, 1190–1202.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

von Rosen, D. (2018). The Basic Ideas of Obtaining MLEs: A Known Dispersion. In: Bilinear Regression Analysis. Lecture Notes in Statistics, vol 220. Springer, Cham. https://doi.org/10.1007/978-3-319-78784-8_2

Download citation

Publish with us

Policies and ethics