c-MET in Head and Neck Squamous Cell Carcinoma

  • John Kaczmar
  • Tim N. BeckEmail author
Part of the Current Cancer Research book series (CUCR)


The kinase receptor c-MET (MET proto-oncogene, receptor tyrosine kinase; also known as the hepatocyte growth factor receptor) and its ligand hepatocyte growth factor/scatter factor (HGF/SF) are two promising, potentially therapeutically exploitable targets in head and neck squamous cell carcinoma (HNSCC). c-MET is commonly overexpressed in head and neck cancer cells compared to normal epithelial cells and HGF/SF is often detected at high expression levels in tumor-adjacent mesenchymal cells, inducing paracrine activation of c-MET to support tumor growth and proliferation. Blocking this paracrine activity has been shown to reduce the proliferative capacity of HNSCC cells. Importantly, c-MET signaling outputs intersect with those of multiple other signaling pathways that drive or otherwise contribute to HNSCC cell survival and spread, including EGFR, HER2, SRC, STAT3, PI3K, RAS, GRB2, and others. In this review, we emphasize the roles of c-MET and HGF in HNSCC as well as the potential for therapeutic targeting of this signaling axis.


c-MET HGFR HGF/SF Head and neck cancer Squamous cell cancer Receptor tyrosine kinases Targeted therapy 


  1. 1.
    Haddad RI, Shin DM. Recent advances in head and neck cancer. N Engl J Med. 2008;359(11):1143–54.CrossRefPubMedGoogle Scholar
  2. 2.
    Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer. 2011;11(1):9–22.CrossRefPubMedGoogle Scholar
  3. 3.
    Pfister DG, et al. Head and neck cancers. J Natl Compr Cancer Netw. 2011;9(6):596–649.CrossRefGoogle Scholar
  4. 4.
    Howlader N, et al. SEER cancer statistics review, 1975–2013. April 2016. Available from:
  5. 5.
    Ferris RL, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–67.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chow LQM, et al. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol. 2016;34(32):3838–45.CrossRefPubMedGoogle Scholar
  7. 7.
    Beck TN, Golemis EA. Genomic insights into head and neck cancer. Cancers Head Neck. 2016;1(1):1.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Network CGA. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517(7536):576–82.CrossRefGoogle Scholar
  9. 9.
    The Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017;541(7636):169–75.CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Vermorken JB, et al. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J Clin Oncol. 2007;25(16):2171–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Bonner JA, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354(6):567–78.CrossRefPubMedGoogle Scholar
  12. 12.
    Maxwell JH, Grandis JR, Ferris RL. HPV-associated head and neck cancer: unique features of epidemiology and clinical management. Annu Rev Med. 2016;67:91–101.CrossRefPubMedGoogle Scholar
  13. 13.
    De Herdt MJ, de Jong RJB. HGF and c-MET as potential orchestrators of invasive growth in head and neck squamous cell carcinoma. Front Biosci (Landmark). 2008;13:2516–26.CrossRefGoogle Scholar
  14. 14.
    Lo Muzio L, et al. Effect of c-Met expression on survival in head and neck squamous cell carcinoma. Tumor Biol. 2006;27(3):115–21.CrossRefGoogle Scholar
  15. 15.
    Vokes EE, Agrawal N, Seiwert TY. HPV-associated head and neck cancer. J Natl Cancer Inst. 2015;107(12):djv344.CrossRefPubMedGoogle Scholar
  16. 16.
    Szturz P, et al. Understanding c-MET signalling in squamous cell carcinoma of the head & neck. Crit Rev Oncol Hematol. 2017;111:39–51.CrossRefPubMedGoogle Scholar
  17. 17.
    Choe JY, et al. Expression of c-Met is different along the location and associated with lymph node metastasis of head and neck carcinoma. Korean J Pathol. 2012;46(6):515–22.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kwon MJ, et al. Frequent hepatocyte growth factor overexpression and low frequency of c-Met gene amplification in human papillomavirus-negative tonsillar squamous cell carcinoma and their prognostic significances. Hum Pathol. 2014;45(7):1327–38.CrossRefPubMedGoogle Scholar
  19. 19.
    Baschnagel AM, et al. c-Met expression is a marker of poor prognosis in patients with locally advanced head and neck squamous cell carcinoma treated with chemoradiation. Int J Radiat Oncol Biol Phys. 2014;88(3):701–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Qian GQ, et al. Human papillomavirus oncoprotein E6 upregulates c-Met through p53 downregulation. Eur J Cancer. 2016;65:21–32.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Akervall J, et al. Genetic and expression profiles of squamous cell carcinoma of the head and neck correlate with cisplatin sensitivity and resistance in cell lines and patients. Clin Cancer Res. 2004;10(24):8204–13.CrossRefPubMedGoogle Scholar
  22. 22.
    Seiwert TY, et al. The MET receptor tyrosine kinase is a potential novel therapeutic target for head and neck squamous cell carcinoma. Cancer Res. 2009;69(7):3021–31.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Birchmeier C, et al. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–25.CrossRefPubMedGoogle Scholar
  24. 24.
    Blumenschein GR Jr, Mills GB, Gonzalez-Angulo AM. Targeting the hepatocyte growth factor-cMET axis in cancer therapy. J Clin Oncol. 2012;30(26):3287–96.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Boccaccio C, Comoglio PM. Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nat Rev Cancer. 2006;6(8):637–45.CrossRefPubMedGoogle Scholar
  26. 26.
    Sadiq AA, Salgia R. Inhibition of MET receptor tyrosine kinase and its ligand hepatocyte growth factor. J Thorac Oncol. 2012;7(16 suppl 5):S372–4.CrossRefPubMedGoogle Scholar
  27. 27.
    Beck TN, et al. Anti-Mullerian hormone signaling regulates epithelial plasticity and chemoresistance in lung cancer. Cell Rep. 2016;16(3):657–71.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Rolland T, et al. A proteome-scale map of the human interactome network. Cell. 2014;159(5):1212–26.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pawson T. Protein modules and signalling networks. Nature. 1995;373(6515):573–80.CrossRefPubMedGoogle Scholar
  30. 30.
    Chen JC, et al. Identification of causal genetic drivers of human disease through systems-level analysis of regulatory networks. Cell. 2014;159(2):402–14.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Molinolo AA, et al. Dysregulated molecular networks in head and neck carcinogenesis. Oral Oncol. 2009;45(4–5):324–34.CrossRefPubMedGoogle Scholar
  32. 32.
    Lai AZ, Abella JV, Park M. Crosstalk in Met receptor oncogenesis. Trends Cell Biol. 2009;19(10):542–51.CrossRefPubMedGoogle Scholar
  33. 33.
    Knowles LM, et al. HGF and c-Met participate in paracrine tumorigenic pathways in head and neck squamous cell cancer. Clin Cancer Res. 2009;15(11):3740–50.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Singleton KR, et al. A receptor tyrosine kinase network composed of fibroblast growth factor receptors, epidermal growth factor receptor, v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, and hepatocyte growth factor receptor drives growth and survival of head and neck squamous carcinoma cell lines. Mol Pharmacol. 2013;83(4):882–93.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Xu H, et al. Dual blockade of EGFR and c-Met abrogates redundant signaling and proliferation in head and neck carcinoma cells. Clin Cancer Res. 2011;17(13):4425–38.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Seiwert T, et al. Phase II trial of single-agent foretinib (GSK1363089) in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Investig New Drugs. 2013;31(2):417–24.Google Scholar
  37. 37.
    Trusolino L, Comoglio PM. Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat Rev Cancer. 2002;2(4):289–300.CrossRefPubMedGoogle Scholar
  38. 38.
    Committee SN. Unified nomenclature for the semaphorins/collapsins. Cell. 1999;97(5):551–2.CrossRefGoogle Scholar
  39. 39.
    Tamagnone L, Comoglio PM. Control of invasive growth by hepatocyte growth factor (HGF) and related scatter factors. Cytokine Growth Factor Rev. 1997;8(2):129–42.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Winberg ML, et al. Plexin A is a neuronal semaphorin receptor that controls axon guidance. Cell. 1998;95(7):903–16.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Giordano S, et al. The semaphorin 4D receptor controls invasive growth by coupling with Met. Nat Cell Biol. 2002;4(9):720–4.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Park M, et al. Mechanism of met oncogene activation. Cell. 1986;45(6):895–904.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Cooper CS, et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature. 1984;311(5981):29–33.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Beck TN, Gabitova L, Serebriiskii IG. Targeted therapy: genomic approaches. In: Reviews in cell biology and molecular medicine. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2015.Google Scholar
  45. 45.
    Peschard P, Park M. From Tpr-Met to Met, tumorigenesis and tubes. Oncogene. 2007;26(9):1276–85.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Park M, et al. Sequence of MET protooncogene cDNA has features characteristic of the tyrosine kinase family of growth-factor receptors. Proc Natl Acad Sci U S A. 1987;84(18):6379–83.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bottaro DP, et al. Identification of the hepatocyte growth-factor receptor as the c-met protooncogene product. Science. 1991;251(4995):802–4.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Rodrigues GA, Naujokas MA, Park M. Alternative splicing generates isoforms of the met receptor tyrosine kinase which undergo differential processing. Mol Cell Biol. 1991;11(6):2962–70.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kim ES, Salgia R. MET pathway as a therapeutic target. J Thorac Oncol. 2009;4(4):444–7.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Organ SL, Tsao MS. An overview of the c-MET signaling pathway. Ther Adv Med Oncol. 2011;3(1 Suppl):S7–S19.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Trusolino L, Bertotti A, Comoglio PM. MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol. 2010;11(12):834–48.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Gherardi E, et al. Targeting MET in cancer: rationale and progress. Nat Rev Cancer. 2012;12(2):89–103.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Giordano S, et al. Tyrosine kinase receptor indistinguishable from the c-met protein. Nature. 1989;339(6220):155–6.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Gherardi E, et al. Structural basis of hepatocyte growth factor/scatter factor and MET signalling. Proc Natl Acad Sci U S A. 2006;103(11):4046–51.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Komada M, et al. Proteolytic processing of the hepatocyte growth factor/scatter factor receptor by furin. FEBS Lett. 1993;328(1–2):25–9.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Chen Z. Aberrant activation of HGF/c-MET signaling and targeted therapy in squamous cancer. In: Glick AB, Van Waes C, editors. Signaling pathways in squamous cancer. New York: Springer; 2011. p. 462.Google Scholar
  57. 57.
    Prat M, et al. C-terminal truncated forms of Met, the hepatocyte growth factor receptor. Mol Cell Biol. 1991;11(12):5954–62.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Gherardi E, et al. The sema domain. Curr Opin Struct Biol. 2004;14(6):669–78.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Basilico C, et al. A high affinity hepatocyte growth factor-binding site in the immunoglobulin-like region of Met. J Biol Chem. 2008;283(30):21267–77.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Stamos J, et al. Crystal structure of the HGF beta-chain in complex with the Sema domain of the Met receptor. EMBO J. 2004;23(12):2325–35.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141(7):1117–34.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Ponzetto C, et al. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell. 1994;77(2):261–71.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Sadiq AA, Salgia R. MET as a possible target for non-small-cell lung cancer. J Clin Oncol. 2013;31(8):1089–96.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Yoon TM, et al. Expression of the receptor tyrosine kinase recepteur d'origine nantais and its association with tumor progression in hypopharyngeal cancer. Head Neck. 2013;35(8):1106–13.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Yao HP, et al. The monoclonal antibody Zt/f2 targeting RON receptor tyrosine kinase as potential therapeutics against tumor growth-mediated by colon cancer cells. Mol Cancer. 2011;10:82.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Donate LE, et al. Molecular evolution and domain-structure of plasminogen-related growth-factors (Hgf/Sf and Hgf1/Msp). Protein Sci. 1994;3(12):2378–94.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Landgraf KE, et al. An allosteric switch for pro-HGF/Met signaling using zymogen activator peptides. Nat Chem Biol. 2014;10(7):567–73.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Naldini L, et al. Extracellular proteolytic cleavage by urokinase is required for activation of hepatocyte growth-factor scatter factor. EMBO J. 1992;11(13):4825–33.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Kojima K, et al. Roles of functional and structural domains of hepatocyte growth factor activator inhibitor type 1 in the inhibition of matriptase. J Biol Chem. 2008;283(5):2478–87.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Szabo R, et al. Matriptase inhibition by hepatocyte growth factor activator inhibitor-1 is essential for placental development. Oncogene. 2007;26(11):1546–56.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Kawaguchi T, et al. Purification and cloning of hepatocyte growth factor activator inhibitor type 2, a Kunitz-type serine protease inhibitor. J Biol Chem. 1997;272(44):27558–64.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ultsch M, et al. Crystal structure of the NK1 fragment of human hepatocyte growth factor at 2.0 A resolution. Structure. 1998;6(11):1383–93.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Kirchhofer D, et al. Structural and functional basis of the serine protease-like hepatocyte growth factor beta-chain in Met binding and signaling. J Biol Chem. 2004;279(38):39915–24.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Chirgadze DY, et al. Crystal structure of the NK1 fragment of HGF/SF suggests a novel mode for growth factor dimerization and receptor binding. Nat Struct Biol. 1999;6(1):72–9.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Xu Y, et al. Receptor-type protein tyrosine phosphatase beta (RPTP-beta) directly dephosphorylates and regulates hepatocyte growth factor receptor (HGFR/Met) function. J Biol Chem. 2011;286(18):15980–8.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Sattler M, et al. The role of the c-Met pathway in lung cancer and the potential for targeted therapy. Ther Adv Med Oncol. 2011;3(4):171–84.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Rong S, et al. Invasiveness and metastasis of NIH 3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine stimulation. Proc Natl Acad Sci U S A. 1994;91(11):4731–5.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Otsuka T, et al. c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res. 1998;58(22):5157–67.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Ferrucci A, et al. A HGF/cMET autocrine loop is operative in multiple myeloma bone marrow endothelial cells and may represent a novel therapeutic target. Clin Cancer Res. 2014;20(22):5796–807.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Rothenberger NJ, Stabile LP. Hepatocyte growth factor/c-Met signaling in head and neck cancer and implications for treatment. Cancers (Basel). 2017;9(4):pii: E39.CrossRefGoogle Scholar
  81. 81.
    Kermorgant S, Parker PJ. Receptor trafficking controls weak signal delivery: a strategy used by c-Met for STAT3 nuclear accumulation. J Cell Biol. 2008;182(5):855–63.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Parachoniak CA, Park M. Dynamics of receptor trafficking in tumorigenicity. Trends Cell Biol. 2012;22(5):231–40.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Abella JV, et al. Dorsal ruffle microdomains potentiate Met receptor tyrosine kinase signaling and down-regulation. J Biol Chem. 2010;285(32):24956–67.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Parachoniak CA, et al. GGA3 functions as a switch to promote Met receptor recycling, essential for sustained ERK and cell migration. Dev Cell. 2011;20(6):751–63.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Lefebvre J, et al. Met degradation: more than one stone to shoot a receptor down. FASEB J. 2012;26(4):1387–99.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Joffre C, et al. A direct role for Met endocytosis in tumorigenesis. Nat Cell Biol. 2011;13(7):827–U227.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Geiger JL, Grandis JR, Bauman JE. The STAT3 pathway as a therapeutic target in head and neck cancer: barriers and innovations. Oral Oncol. 2016;56:84–92.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Kermorgant S, Zicha D, Parker PJ. PKC controls HGF-dependent c-Met traffic, signalling and cell migration. EMBO J. 2004;23(19):3721–34.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Coleman DT, et al. Palmitoylation regulates the intracellular trafficking and stability of c-Met. Oncotarget. 2016;7(22):32664–77.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Cho KW, et al. Identification of a pivotal endocytosis motif in c-Met and selective modulation of HGF-dependent aggressiveness of cancer using the 16-mer endocytic peptide. Oncogene. 2013;32(8):1018–29.CrossRefPubMedGoogle Scholar
  91. 91.
    Petrelli A, et al. The endophilin-CIN85-Cbl complex mediates ligand-dependent downregulation of c-Met. Nature. 2002;416(6877):187–90.CrossRefPubMedGoogle Scholar
  92. 92.
    Li N, et al. Specific Grb2-mediated interactions regulate clathrin-dependent endocytosis of the cMet-tyrosine kinase. J Biol Chem. 2007;282(23):16764–75.CrossRefPubMedGoogle Scholar
  93. 93.
    Singleton PA, et al. CD44 regulates hepatocyte growth factor-mediated vascular integrity: role of c-Met, Tiam1/Rac1, dynamin 2, and cortactin. J Biol Chem. 2007;282(42):30643–57.CrossRefPubMedGoogle Scholar
  94. 94.
    Ogi S, et al. Sorting nexin 2-mediated membrane trafficking of c-Met contributes to sensitivity of molecular-targeted drugs. Cancer Sci. 2013;104(5):573–83.CrossRefPubMedGoogle Scholar
  95. 95.
    Kamei T, et al. Coendocytosis of cadherin and c-Met coupled to disruption of cell-cell adhesion in MDCK cells - regulation by Rho, Rac and Rab small G proteins. Oncogene. 1999;18(48):6776–84.CrossRefPubMedGoogle Scholar
  96. 96.
    Hartmann S, Bhola NE, Grandis JR. HGF/Met signaling in head and neck cancer: impact on the tumor microenvironment. Clin Cancer Res. 2016;22(16):4005–13.CrossRefPubMedGoogle Scholar
  97. 97.
    Weidner KM, et al. Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature. 1996;384(6605):173–6.CrossRefPubMedGoogle Scholar
  98. 98.
    Grotegut S, et al. Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J. 2006;25(15):3534–45.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Nikonova AS, et al. CAS proteins in health and disease: an update. IUBMB Life. 2014;66(6):387–95.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Comoglio PM, Giordano S, Trusolino L. Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov. 2008;7(6):504–16.CrossRefPubMedGoogle Scholar
  101. 101.
    Dong G, et al. Hepatocyte growth factor/scatter factor-induced activation of MEK and PI3K signal pathways contributes to expression of proangiogenic cytokines interleukin-8 and vascular endothelial growth factor in head and neck squamous cell carcinoma. Cancer Res. 2001;61(15):5911–8.PubMedGoogle Scholar
  102. 102.
    Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res. 2008;14(21):6735–41.CrossRefPubMedGoogle Scholar
  103. 103.
    Cohen RF, et al. Interleukin-8 expression by head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 1995;121(2):202–9.CrossRefPubMedGoogle Scholar
  104. 104.
    Le QT, et al. Prognostic and predictive significance of plasma HGF and IL-8 in a phase III trial of chemoradiation with or without tirapazamine in locoregionally advanced head and neck cancer. Clin Cancer Res. 2012;18(6):1798–807.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Duncan JS, et al. Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell. 2012;149(2):307–21.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Guo A, et al. Signaling networks assembled by oncogenic EGFR and c-Met. Proc Natl Acad Sci U S A. 2008;105(2):692–7.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Beck TN, et al. EGFR and RB1 as dual biomarkers in HPV-negative head and neck cancer. Mol Cancer Ther. 2016;15(10):2486–97.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Logue JS, Morrison DK. Complexity in the signaling network: insights from the use of targeted inhibitors in cancer therapy. Genes Dev. 2012;26(7):641–50.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Sun C, Bernards R. Feedback and redundancy in receptor tyrosine kinase signaling: relevance to cancer therapies. Trends Biochem Sci. 2014;39(10):465–74.CrossRefPubMedGoogle Scholar
  110. 110.
    Garofalo M, et al. EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med. 2012;18(1):74–82.CrossRefGoogle Scholar
  111. 111.
    Stabile LP, et al. c-Src activation mediates erlotinib resistance in head and neck cancer by stimulating c-Met. Clin Cancer Res. 2013;19(2):380–92.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Turke AB, et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell. 2010;17(1):77–88.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Tang Z, et al. Dual MET-EGFR combinatorial inhibition against T790M-EGFR-mediated erlotinib-resistant lung cancer. Br J Cancer. 2008;99(6):911–22.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Khoury H, et al. HGF converts ErbB2/Neu epithelial morphogenesis to cell invasion. Mol Biol Cell. 2005;16(2):550–61.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Chen CT, et al. MET activation mediates resistance to lapatinib inhibition of HER2-amplified gastric cancer cells. Mol Cancer Ther. 2012;11(3):660–9.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Engelman JA, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316(5827):1039–43.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Schoeberl B, et al. An ErbB3 antibody, MM-121, is active in cancers with ligand-dependent activation. Cancer Res. 2010;70(6):2485–94.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Liu JF, et al. Randomized phase II trial of seribantumab in combination with paclitaxel in patients with advanced platinum-resistant or -refractory ovarian cancer. J Clin Oncol. 2016;34(36):4345–53.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Meetze K, et al. Neuregulin 1 expression is a predictive biomarker for response to AV-203, an ERBB3 inhibitory antibody, in human tumor models. Clin Cancer Res. 2015;21(5):1106–14.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Lee S, et al. Inhibition of ErbB3 by a monoclonal antibody that locks the extracellular domain in an inactive configuration. Proc Natl Acad Sci U S A. 2015;112(43):13225–30.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Meulendijks D, et al. First-in-human phase I study of lumretuzumab, a glycoengineered humanized anti-HER3 monoclonal antibody, in patients with metastatic or advanced HER3-positive solid tumors. Clin Cancer Res. 2016;22(4):877–85.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Mehra R, et al. Protein-intrinsic and signaling network-based sources of resistance to EGFR- and ErbB family-targeted therapies in head and neck cancer. Drug Resist Updat. 2011;14(6):260–79.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Price KA, Cohen EE. Mechanisms of and therapeutic approaches for overcoming resistance to epidermal growth factor receptor (EGFR)-targeted therapy in squamous cell carcinoma of the head and neck (SCCHN). Oral Oncol. 2015;51(5):399–408.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Soulieres D, et al. Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol. 2004;22(1):77–85.CrossRefPubMedGoogle Scholar
  125. 125.
    Machiels J-PH, et al. Afatinib versus methotrexate as second-line treatment in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck progressing on or after platinum-based therapy (LUX-Head & Neck 1): an open-label, randomised phase 3 trial. Lancet Oncol. 2015;16(5):583–94.CrossRefPubMedGoogle Scholar
  126. 126.
    Madoz-Gurpide J, et al. Activation of MET pathway predicts poor outcome to cetuximab in patients with recurrent or metastatic head and neck cancer. J Transl Med. 2015;13:282.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Zhang S, Yu D. Targeting Src family kinases in anti-cancer therapies: turning promise into triumph. Trends Pharmacol Sci. 2012;33(3):122–8.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Sen B, et al. Distinct interactions between c-Src and c-Met in mediating resistance to c-Src inhibition in head and neck cancer. Clin Cancer Res. 2011;17(3):514–24.CrossRefPubMedGoogle Scholar
  129. 129.
    Thiery JP, et al. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Mandal M, et al. Epithelial to mesenchymal transition in head and neck squamous carcinoma: association of Src activation with E-cadherin down-regulation, vimentin expression, and aggressive tumor features. Cancer. 2008;112(9):2088–100.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Shah NP, et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 2004;305(5682):399–401.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Bauman JE, et al. Randomized, placebo-controlled window trial of EGFR, Src, or combined blockade in head and neck cancer. JCI Insight. 2017;2(6):e90449.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Hay ED. An overview of epithelio-mesenchymal transformation. Cells Tissues Organs. 1995;154(1):8–20.CrossRefGoogle Scholar
  134. 134.
    Fischer KR, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 2015;527(7579):472–6.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Zheng X, et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature. 2015;527(7579):525–30.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Bladt F, et al. Essential role for the c-Met receptor in the migration of myogenic precursor cells into the limb bud. Nature. 1995;376(6543):768–71.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Dawson JC, et al. Mtss1 promotes cell-cell junction assembly and stability through the small GTPase Rac1. PLoS One. 2012;7(3):e31141.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Nieto MA, et al. Emt: 2016. Cell. 2016;166(1):21–45.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Nieto MA. Epithelial plasticity: a common theme in embryonic and cancer cells. Science. 2013;342(6159):1234850.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Smith A, Teknos TN, Pan Q. Epithelial to mesenchymal transition in head and neck squamous cell carcinoma. Oral Oncol. 2013;49(4):287–92.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Vogelstein B, et al. Cancer genome landscapes. Science. 2013;339(6127):1546–58.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Kandoth C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502(7471):333–9.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    McGranahan N, et al. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci Transl Med. 2015;7(283):283ra54.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    van Roy F, Berx G. The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 2008;65(23):3756–88.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Ren X, et al. E-cadherin expression and prognosis of head and neck squamous cell carcinoma: evidence from 19 published investigations. Onco Targets Ther. 2016;9:2447–53.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Cecchi F, Rabe DC, Bottaro DP. Targeting the HGF/Met signalling pathway in cancer. Eur J Cancer. 2010;46(7):1260–70.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Bhatia A, Burtness B. Human papillomavirus-associated oropharyngeal cancer: defining risk groups and clinical trials. J Clin Oncol. 2015;33(29):3243–50.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Beck TN, et al. Head and neck squamous cell carcinoma: ambiguous human papillomavirus status, elevated p16, and deleted retinoblastoma 1. Head Neck. 2017;39(3):E34–9.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer. 2010;10(8):550–60.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Gao JJ, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Cerami E, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data (vol 2, pg 401, 2012). Cancer Discov. 2012;2(10):960.CrossRefGoogle Scholar
  153. 153.
    Tyner JW, et al. MET receptor sequence variants R970C and T992I lack transforming capacity. Cancer Res. 2010;70(15):6233–7.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Tengs T, et al. A transforming MET mutation discovered in non-small cell lung cancer using microarray-based resequencing. Cancer Lett. 2006;239(2):227–33.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Lengyel E, Sawada K, Salgia R. Tyrosine kinase mutations in human cancer. Curr Mol Med. 2007;7(1):77–84.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Kong-Beltran M, et al. Somatic mutations lead to an oncogenic deletion of met in lung cancer. Cancer Res. 2006;66(1):283–9.CrossRefPubMedGoogle Scholar
  157. 157.
    Dulak AM, et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat Genet. 2013;45(5):478–U37.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Argiris A, et al. Phase III randomized, placebo-controlled trial of docetaxel with or without gefitinib in recurrent or metastatic head and neck cancer: an eastern cooperative oncology group trial. J Clin Oncol. 2013;31(11):1405–14.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Hayes DN, Grandis J, El-Naggar AK, et al. Comprehensive genomic characterization of squamous cell carcinoma of the head and neck in the Cancer Genome Atlas. In: AACR annual meeting 2013. Washington, DC: AACR; 2013.Google Scholar
  160. 160.
    Sonnenberg E, et al. Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol. 1993;123(1):223–35.CrossRefPubMedGoogle Scholar
  161. 161.
    Sun S, Wang Z. Head neck squamous cell carcinoma c-Met(+) cells display cancer stem cell properties and are responsible for cisplatin-resistance and metastasis. Int J Cancer. 2011;129(10):2337–48.CrossRefPubMedGoogle Scholar
  162. 162.
    Sierra J. c-MET as a potential therapeutic target and biomarker in cancer. Ther Adv Med Oncol. 2011;3(S1):S21–35.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Wilson GD, et al. Cancer stem cell signaling during repopulation in head and neck cancer. Stem Cells Int. 2016;2016:1894782.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Ettl T, et al. AKT and MET signalling mediates antiapoptotic radioresistance in head neck cancer cell lines. Oral Oncol. 2015;51(2):158–63.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Kumai T, et al. EGFR inhibitors augment antitumour helper T-cell responses of HER family-specific immunotherapy. Br J Cancer. 2013;109(8):2155–66.CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Bean J, et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A. 2007;104(52):20932–7.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Vokes EE, et al. A randomized phase II trial of the MET inhibitor tivantinib + cetuximab versus cetuximab alone in patients with recurrent/metastatic head and neck cancer. J Clin Oncol. 2015;33(15_suppl):6060.Google Scholar
  168. 168.
    Biankin AV, Piantadosi S, Hollingsworth SJ. Patient-centric trials for therapeutic development in precision oncology. Nature. 2015;526(7573):361–70.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Szturz P, Raymond E, Faivre S. c-MET-mediated resistance to EGFR inhibitors in head and neck cancer: how to move from bench to bedside. Oral Oncol. 2016;59:E12–4.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Scagliotti G, et al. Phase III multinational, randomized, double-blind, placebo-controlled study of tivantinib (ARQ 197) plus erlotinib versus erlotinib alone in previously treated patients with locally advanced or metastatic nonsquamous non-small-cell lung cancer. J Clin Oncol. 2015;33(24):2667–74.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Liu X, et al. A novel kinase inhibitor, INCB28060, blocks c-MET-dependent signaling, neoplastic activities, and cross-talk with EGFR and HER-3. Clin Cancer Res. 2011;17(22):7127–38.CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Dufies M, et al. Mechanism of action of the multikinase inhibitor Foretinib. Cell Cycle. 2011;10(23):4138–48.CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Xu L, et al. Combined EGFR/MET or EGFR/HSP90 inhibition is effective in the treatment of lung cancers codriven by mutant EGFR containing T790M and MET. Cancer Res. 2012;72(13):3302–11.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Michieli P, Di Nicolantonio F. Targeted therapies: Tivantinib-a cytotoxic drug in MET inhibitor’s clothes? Nat Rev Clin Oncol. 2013;10(7):372–4.CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Scagliotti GV, et al. Rationale and design of MARQUEE: a phase III, randomized, double-blind study of tivantinib plus erlotinib versus placebo plus erlotinib in previously treated patients with locally advanced or metastatic, nonsquamous, non-small-cell lung cancer. Clin Lung Cancer. 2012;13(5):391–5.CrossRefPubMedGoogle Scholar
  176. 176.
    Schlumberger M, et al. Final overall survival analysis of EXAM, an international, double-blind, randomized, placebo-controlled phase III trial of cabozantinib (Cabo) in medullary thyroid carcinoma (MTC) patients with documented RECIST progression at baseline. J Clin Oncol. 2015;33(suppl 15):abstr 6012.Google Scholar
  177. 177.
    Scagliotti GV, Novello S, von Pawel J. The emerging role of MET/HGF inhibitors in oncology. Cancer Treat Rev. 2013;39(7):793–801.CrossRefPubMedGoogle Scholar
  178. 178.
    Shaw AT, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368(25):2385–94.CrossRefPubMedGoogle Scholar
  179. 179.
    Ou SH, et al. Activity of crizotinib (PF02341066), a dual mesenchymal-epithelial transition (MET) and anaplastic lymphoma kinase (ALK) inhibitor, in a non-small cell lung cancer patient with de novo MET amplification. J Thorac Oncol. 2011;6(5):942–6.CrossRefPubMedGoogle Scholar
  180. 180.
    Sun S, et al. Targeting the c-Met/FZD8 signaling axis eliminates patient-derived cancer stem-like cells in head and neck squamous carcinomas. Cancer Res. 2014;74(24):7546–59.CrossRefPubMedGoogle Scholar
  181. 181.
    Penuel J, Smith JC, Shen SQ. Integer programming models and algorithms for the graph decontamination problem with mobile agents. Networks. 2013;61(1):1–19.CrossRefGoogle Scholar
  182. 182.
    Spigel D, et al. Final efficacy results from OAM4558g, a randomized phase II study evaluating MetMAb or placebo in combination with erlotinib in advanced NSCLC. J Clin Oncol. 2011;29(suppl 15):abstr 7505.CrossRefGoogle Scholar
  183. 183.
    Spigel DR, et al. Treatment rationale study design for the MetLung trial: a randomized, double-blind phase III study of onartuzumab (MetMAb) in combination with erlotinib versus erlotinib alone in patients who have received standard chemotherapy for stage IIIB or IV met-positive non-small-cell lung cancer. Clin Lung Cancer. 2012;13(6):500–4.CrossRefPubMedGoogle Scholar
  184. 184.
    Spigel DR, et al. Onartuzumab plus erlotinib versus erlotinib in previously treated stage IIIb or IV NSCLC: results from the pivotal phase III randomized, multicenter, placebo-controlled METLung (OAM4971g) global trial. J Clin Oncol. 2014;32(suppl 5):abstr 8000.Google Scholar
  185. 185.
    Bendell JC, et al. A phase II randomized trial (GO27827) of first-line FOLFOX plus bevacizumab with or without the MET inhibitor onartuzumab in patients with metastatic colorectal cancer. Oncologist. 2017;22(3):264–71.CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Zeng W, et al. Abstract 2734: c-Met antibody LY2875358 (LA480) shows differential antitumor effects in non-small cell lung cancer. Cancer Res. 2012;72(8):abstr 2734.CrossRefGoogle Scholar
  187. 187.
    Banck MS, et al. Abstract A55: phase 1 results of emibetuzumab (LY2875358), a bivalent MET antibody, in patients with advanced castration-resistant prostate cancer, and MET positive renal cell carcinoma, non-small cell lung cancer, and hepatocellular carcinoma. Mol Cancer Ther. 2015;14(12 Supplement 2):A55.CrossRefGoogle Scholar
  188. 188.
    Yoh K, et al. A phase I dose-escalation study of LY2875358, a bivalent MET antibody, given as monotherapy or in combination with erlotinib or gefitinib in Japanese patients with advanced malignancies. Investig New Drugs. 2016;34(5):584–95.CrossRefGoogle Scholar
  189. 189.
    Camidge DR, et al. A randomized, open-label, phase 2 study of emibetuzumab plus erlotinib (LY+E) and emibetuzumab monotherapy (LY) in patients with acquired resistance to erlotinib and MET diagnostic positive (MET Dx+) metastatic NSCLC. J Clin Oncol. 2016;34(suppl 15):abstr 9070.CrossRefGoogle Scholar
  190. 190.
    D’Arcangelo M, Cappuzzo F. Focus on the potential role of ficlatuzumab in the treatment of non-small cell lung cancer. Biologics. 2013;7:61–8.PubMedPubMedCentralGoogle Scholar
  191. 191.
    Kumar D, et al. Mitigation of tumor-associated fibroblast-facilitated head and neck cancer progression with anti-hepatocyte growth factor antibody ficlatuzumab. JAMA Otolaryngol Head Neck Surg. 2015;141(12):1133–9.CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Ryan CJ, et al. Targeted MET inhibition in castration-resistant prostate cancer: a randomized phase II study and biomarker analysis with rilotumumab plus mitoxantrone and prednisone. Clin Cancer Res. 2013;19(1):215–24.CrossRefPubMedGoogle Scholar
  193. 193.
    Greenall SA, Adams TE, Johns TG. Incomplete target neutralization by the anti-cancer antibody rilotumumab. MAbs. 2016;8(2):246–52.CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Okamoto W, et al. TAK-701, a humanized monoclonal antibody to hepatocyte growth factor, reverses gefitinib resistance induced by tumor-derived HGF in non-small cell lung cancer with an EGFR mutation. Mol Cancer Ther. 2010;9(10):2785–92.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Mirnezami R, Nicholson J, Darzi A. Preparing for precision medicine. N Engl J Med. 2012;366(6):489–91.CrossRefPubMedGoogle Scholar
  196. 196.
    Garraway LA, Verweij J, Ballman KV. Precision oncology: an overview. J Clin Oncol. 2013;31(15):1803–5.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hollings Cancer Center, Division of Hematology and Oncology, Department of MedicineMedical University of South CarolinaCharlestonUSA
  2. 2.Molecular Therapeutics ProgramFox Chase Cancer CenterPhiladelphiaUSA
  3. 3.Program in Molecular and Cell Biology and GeneticsDrexel University College of MedicinePhiladelphiaUSA

Personalised recommendations