Skip to main content

Biology and Epidemiology of Human Papillomavirus-Related Head and Neck Cancer

  • Chapter
  • First Online:
Molecular Determinants of Head and Neck Cancer

Part of the book series: Current Cancer Research ((CUCR))

  • 550 Accesses

Abstract

Human papillomavirus (HPV) infection is now established as a major causative agent for development of the head and neck cancers. HPV-initiated tumors of the oropharynx have better survival rates than HPV-negative cancers, and this appears likely to be associated with differences in the biology underlying these two diseases. We will discuss the role of HPV-encoded proteins in host infection and carcinogenesis; will review the emerging biology of intratypic variants of HPV, with numerous variants possessing different potential for malignancy; and will suggest areas for the further study. Finally, we will highlight global trends in HPV-associated oropharyngeal head and neck cancer incidence and prevalence rates, with recent data showing a dramatic increase of infection worldwide and differing infection rates in developed and developing nations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hausen HZ, de Villiers EM. Human papillomaviruses. Annu Rev Microbiol. 1994;48(1):427–47.

    Article  PubMed  Google Scholar 

  2. Syrjänen K, Syrjänen S, Lamberg M, Pyrhönen S, Nuutinen J. Morphological and immunohistochemical evidence suggesting human papillomavirus (HPV) involvement in oral squamous cell carcinogenesis. Int J Oral Surg. 1983;12(6):418–24.

    Article  PubMed  Google Scholar 

  3. Gillison ML, Koch WM, Capone RB, Spafford MJ, Westra W, Wu L, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst. 2000;92(9):709–20.

    Article  PubMed  CAS  Google Scholar 

  4. Gillison ML, Lowy DR. A causal role for human papillomavirus in head and neck cancer. Lancet. 2004;363(9420):1488–9.

    Article  PubMed  CAS  Google Scholar 

  5. Kreimer AR, Clifford GM, Boyle P, Franceschi S. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomark Prev. 2005;14(2):467–75.

    Article  CAS  Google Scholar 

  6. Badaracco G, Venuti A, Morello R, Muller A, Marcante ML. Human papillomavirus in head and neck carcinomas: prevalence, physical status and relationship with clinical/pathological parameters. Anticancer Res. 2000;20(2B):1301–5.

    PubMed  CAS  Google Scholar 

  7. Klussmann JP, Weissenborn SJ, Wieland U, Dries V, Kolligs J, Jungehuelsing M, et al. Prevalence, distribution, and viral load of human papillomavirus 16 DNA in tonsillar carcinomas. Cancer. 2001;92(11):2875–84.

    Article  PubMed  CAS  Google Scholar 

  8. Lindel K, Beer KT, Laissue J, Greiner RH, Aebersold DM. Human papillomavirus positive squamous cell carcinoma of the oropharynx. Cancer. 2001;92(4):805–13.

    Article  PubMed  CAS  Google Scholar 

  9. Mellin H, Friesland S, Lewensohn R, Dalianis T, Munck-Wikland E. Human papillomavirus (HPV) DNA in tonsillar cancer: clinical correlates, risk of relapse, and survival. Int J Cancer. 2000;89(3):300–4.

    Article  PubMed  CAS  Google Scholar 

  10. Miller CS, Johnstone BM. Human papillomavirus as a risk factor for oral squamous cell carcinoma: a meta-analysis, 1982–1997. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;91(6):622–35.

    Article  PubMed  CAS  Google Scholar 

  11. Mork J, Lie AK, Glattre E, Clark S, Hallmans G, Jellum E, et al. Human papillomavirus infection as a risk factor for squamous-cell carcinoma of the head and neck. N Engl J Med. 2001;344(15):1125–31.

    Article  PubMed  CAS  Google Scholar 

  12. Sethi S, Ali-Fehmi R, Franceschi S, Struijk L, van Doorn L-J, Quint W, et al. Characteristics and survival of head and neck cancer by HPV status: a cancer registry-based study. Int J Cancer. 2011;131(5):1179–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sisk EA, Bradford CR, Jacob A, Yian CH, Staton KM, Tang G, et al. Human papillomavirus infection in “young” versus “old” patients with squamous cell carcinoma of the head and neck. Head Neck. 2000;22(7):649–57.

    Article  PubMed  CAS  Google Scholar 

  14. Venuti A, Manni V, Morello R, De Marco F, Marzetti F, Marcante ML. Physical state and expression of human papillomavirus in laryngeal carcinoma and surrounding normal mucosa. J Med Virol. 2000;60(4):396–402.

    Article  PubMed  CAS  Google Scholar 

  15. Vietia D, Liuzzi JP, Avila M, De Guglielmo Z, Prado Y, Correnti M. Human papillomavirus detection in head and neck squamous cell carcinoma. Ecancermedicalscience 2014;8.

    Google Scholar 

  16. Dahlstrand HM, Dalianis T. Presence and influence of human papillomaviruses (HPV) in Tonsillar cancer. Adv in Cancer Res. 2005;93:59–89.

    Google Scholar 

  17. Klussmann JP, Gültekin E, Weissenborn SJ, Wieland U, Dries V, Dienes HP, et al. Expression of p16 protein identifies a distinct entity of tonsillar carcinomas associated with human papillomavirus. Am J Pathol. 2003;162(3):747–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. El-Mofty SK, Lu DW. Prevalence of human papillomavirus type 16 DNA in squamous cell carcinoma of the palatine tonsil, and not the oral cavity, in young patients. Am J Surg Pathol. 2003;27(11):1463–70.

    Article  PubMed  Google Scholar 

  19. Burk RD, Chen Z, Van Doorslaer K. Human papillomaviruses: genetic basis of carcinogenicity. Public Health Genomics. 2009;12(5–6):281–90.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Van Doorslaer K, Burk RD. Evolution of human papillomavirus carcinogenicity. Adv Virus Res. 2010;77:41–62.

    Google Scholar 

  21. Kines RC, Thompson CD, Lowy DR, Schiller JT, Day PM. The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc Natl Acad Sci. 2009;106(48):20458–63.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schiller JT, Day PM, Kines RC. Current understanding of the mechanism of HPV infection. Gynecol Oncol. 2010;118(1):S12–S7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. McBride AA, Oliveira JG, McPhillips MG. Partitioning viral genomes in mitosis: same idea, different targets. Cell Cycle. 2006;5(14):1499–502.

    Article  PubMed  CAS  Google Scholar 

  24. Munger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M, et al. Mechanisms of human papillomavirus-induced oncogenesis. J Virol. 2004;78(21):11451–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hajek M, Sewell A, Kaech S, Burtness B, Yarbrough WG, Issaeva N. TRAF3/CYLD mutations identify a distinct subset of human papillomavirus-associated head and neck squamous cell carcinoma. Cancer. 2017;123(10):1778–90.

    Article  PubMed  CAS  Google Scholar 

  26. Richards RM, Lowy DR, Schiller JT, Day PM. Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc Natl Acad Sci U S A. 2006;103(5):1522–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Letian T, Tianyu Z. Cellular receptor binding and entry of human papillomavirus. Virol J. 2010;7:2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Huber B, Schellenbacher C, Shafti-Keramat S, Jindra C, Christensen N, Kirnbauer R. Chimeric L2-based Virus-Like Particle (VLP) vaccines targeting cutaneous human papillomaviruses (HPV). PLoS One. 2017;12(1):e0169533.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Berg M, Stenlund A. Functional interactions between papillomavirus E1 and E2 proteins. J Virol. 1997;71(5):3853–63.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Powell MLC, Smith JA, Sowa ME, Harper JW, Iftner T, Stubenrauch F, et al. NCoR1 mediates papillomavirus E8^E2C transcriptional repression. J Virol. 2010;84(9):4451–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Paolini F, Curzio G, Melucci E, Terrenato I, Antoniani B, Carosi M, et al. Human papillomavirus 16 E2 interacts with neuregulin receptor degradation protein 1 affecting ErbB-3 expression in vitro and in clinical samples of cervical lesions. Eur J Cancer. 2016;58:52–61.

    Article  PubMed  CAS  Google Scholar 

  32. Ma T, Zou N, Lin BY, Chow LT, Harper JW. Interaction between cyclin-dependent kinases and human papillomavirus replication-initiation protein E1 is required for efficient viral replication. Proc Natl Acad Sci. 1999;96(2):382–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lin BY, Ma T, Liu J, Kuo SH, Jin G, Broker TR, et al. HeLa cells are phenotypically limiting in cyclin E/CDK2 for efficient human papillomavirus DNA replication. J Biol Chem. 2000;275(9):6167–74.

    Article  PubMed  CAS  Google Scholar 

  34. Liu JS, Kuo SR, Makhov AM, Cyr DM, Griffith JD, Broker TR, et al. Human Hsp70 and Hsp40 chaperone proteins facilitate human papillomavirus-11 E1 protein binding to the origin and stimulate cell-free DNA replication. J Biol Chem. 1998;273(46):30704–12.

    Article  PubMed  CAS  Google Scholar 

  35. Lee D, Sohn H, Kalpana GV, Choe J. Interaction of E1 and hSNF5 proteins stimulates replication of human papillomavirus DNA. Nature. 1999;399(6735):487–91.

    Article  PubMed  CAS  Google Scholar 

  36. Swindle CS, Engler JA. Association of the human papillomavirus type 11 E1 protein with histone H1. J Virol. 1998;72(3):1994–2001.

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Yasugi T, Vidal M, Sakai H, Howley PM, Benson JD. Two classes of human papillomavirus type 16 E1 mutants suggest pleiotropic conformational constraints affecting E1 multimerization, E2 interaction, and interaction with cellular proteins. J Virol. 1997;71(8):5942–51.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Fradet-Turcotte A, Brault K, Titolo S, Howley PM, Archambault J. Characterization of papillomavirus E1 helicase mutants defective for interaction with the SUMO-conjugating enzyme Ubc9. Virology. 2009;395(2):190–201.

    Article  PubMed  CAS  Google Scholar 

  39. Lin BY, Makhov AM, Griffith JD, Broker TR, Chow LT. Chaperone proteins abrogate inhibition of the human papillomavirus (HPV) E1 replicative helicase by the HPV E2 protein. Mol Cell Biol. 2002;22(18):6592–604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Straub E, Dreer M, Fertey J, Iftner T, Stubenrauch F. The viral E8^E2C repressor limits productive replication of human papillomavirus 16. J Virol. 2013;88(2):937–47.

    Article  PubMed  CAS  Google Scholar 

  41. Kurg R. The Role of E2 Proteins in Papillomavirus DNA Replication. DNA Replication– Current Advances. InTech. 2011;DOI:https://doi.org/10.5772/19609.

  42. Straub E, Fertey J, Dreer M, Iftner T, Stubenrauch F. Characterization of the human papillomavirus 16 E8 promoter. J Virol. 2015;89(14):7304–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Dreer M, Fertey J, van de Poel S, Straub E, Madlung J, Macek B, et al. Interaction of NCOR/SMRT repressor complexes with papillomavirus E8^E2C proteins inhibits viral replication. PLoS Pathog. 2016;12(4):e1005556.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Stubenrauch F, Zobel T, Iftner T. The E8 domain confers a novel long-distance transcriptional repression activity on the E8^E2C protein of high-risk human papillomavirus type 31. J Virol. 2001;75(9):4139–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Fertey J, Hurst J, Straub E, Schenker A, Iftner T, Stubenrauch F. Growth inhibition of HeLa cells is a conserved feature of high-risk human papillomavirus E8^E2C proteins and can also be achieved by an artificial repressor protein. J Virol. 2010;85(6):2918–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Doorbar J, Ely S, Sterling J, McLean C, Crawford L. Specific interaction between HPV-16 E1–E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature. 1991;352(6338):824–7.

    Article  PubMed  CAS  Google Scholar 

  47. Khan J, Davy CE, McIntosh PB, Jackson DJ, Hinz S, Wang Q, et al. Role of calpain in the formation of human papillomavirus type 16 E1^E4 amyloid fibers and reorganization of the Keratin network. J Virol. 2011;85(19):9984–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. McIntosh PB, Laskey P, Sullivan K, Davy C, Wang Q, Jackson DJ, et al. E1--E4-mediated keratin phosphorylation and ubiquitylation: a mechanism for keratin depletion in HPV16-infected epithelium. J Cell Sci. 2010;123(Pt 16):2810–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kumar A, Yadav IS, Hussain S, Das BC, Bharadwaj M. Identification of immunotherapeutic epitope of E5 protein of human papillomavirus-16: An in silico approach. Biologicals. 2015;43(5):344–8.

    Article  PubMed  CAS  Google Scholar 

  50. Conrad M, Bubb VJ, Schlegel R. The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associate with the 16-kilodalton pore-forming protein. J Virol. 1993;67(10):6170–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Oetke C, Auvinen E, Pawlita M, Alonso A. Human papillomavirus type 16 E5 protein localizes to the Golgi apparatus but does not grossly affect cellular glycosylation. Arch Virol. 2000;145(10):2183–91.

    Article  PubMed  CAS  Google Scholar 

  52. Um SH, Mundi N, Yoo J, Palma DA, Fung K, MacNeil D, et al. Variable expression of the forgotten oncogene E5 in HPV-positive oropharyngeal cancer. J Clin Virol. 2014;61(1):94–100.

    Article  PubMed  CAS  Google Scholar 

  53. DiMaio D, Mattoon D. Mechanisms of cell transformation by papillomavirus E5 proteins. Oncogene. 2001;20(54):7866–73.

    Article  PubMed  CAS  Google Scholar 

  54. Häfner N, Driesch C, Gajda M, Jansen L, Kirchmayr R, Runnebaum IB, et al. Integration of the HPV16 genome does not invariably result in high levels of viral oncogene transcripts. Oncogene. 2007;27(11):1610–7.

    Article  PubMed  CAS  Google Scholar 

  55. Bouvard V, Matlashewski G, Gu Z-M, Storey A, Banks L. The human papillomavirus type 16 E5 gene cooperates with the E7 gene to stimulate proliferation of primary cells and increases viral gene expression. Virology. 1994;203(1):73–80.

    Article  PubMed  CAS  Google Scholar 

  56. Crusius K, Rodriguez I, Alonso A. The human papillomavirus type 16 E5 protein modulates ERK1/2 and p38 MAP kinase activation by an EGFR-independent process in stressed human keratinocytes. Virus Genes. 2000;20(1):65–9.

    Article  PubMed  CAS  Google Scholar 

  57. Liu C, Lin J, Li L, Zhang Y, Chen W, Cao Z, et al. HPV16 early gene E5 specifically reduces miRNA-196a in cervical cancer cells. Sci Rep. 2015;5:7653.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Auvinen E, Alonso A, Auvinen P. Human papillomavirus type 16 E5 protein colocalizes with the antiapoptotic Bcl-2 protein. Arch Virol. 2004;149(9):1745–59.

    Google Scholar 

  59. Ashrafi GH, Brown DR, Fife KH, Campo MS. Down-regulation of MHC class I is a property common to papillomavirus E5 proteins. Virus Res. 2006;120(1–2):208–11.

    Article  PubMed  CAS  Google Scholar 

  60. Chang JL, Tsao YP, Liu DW, Huang SJ, Lee WH, Chen SL. The expression of HPV-16 E5 protein in squamous neoplastic changes in the uterine cervix. J Biomed Sci. 2001;8(2):206–13.

    Article  PubMed  CAS  Google Scholar 

  61. Zhang B, Li P, Wang E, Brahmi Z, Dunn KW, Blum JS, et al. The E5 protein of human papillomavirus type 16 perturbs MHC class II antigen maturation in human foreskin keratinocytes treated with interferon-γ. Virology. 2003;310(1):100–8.

    Article  PubMed  CAS  Google Scholar 

  62. Kotnik Halavaty K, Regan J, Mehta K, Laimins L. Human papillomavirus E5 oncoproteins bind the A4 endoplasmic reticulum protein to regulate proliferative ability upon differentiation. Virology. 2014;452–453:223–30.

    Article  PubMed  CAS  Google Scholar 

  63. Paolini F, Curzio G, Cordeiro MN, Massa S, Mariani L, Pimpinelli F, et al. HPV 16 E5 oncoprotein is expressed in early stage carcinogenesis and can be a target of immunotherapy. Hum Vaccin Immunother. 2017;13(2):291–7.

    Article  PubMed  Google Scholar 

  64. Gao Q, Kumar A, Srinivasan S, Singh L, Mukai H, Ono Y, et al. PKN binds and phosphorylates human papillomavirus E6 Oncoprotein. J Biol Chem. 2000;275(20):14824–30.

    Article  PubMed  CAS  Google Scholar 

  65. Massimi P, Shai A, Lambert P, Banks L. HPV E6 degradation of p53 and PDZ containing substrates in an E6AP null background. Oncogene. 2007;27(12):1800–4.

    Article  PubMed  CAS  Google Scholar 

  66. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell. 1993;75(3):495–505.

    Article  PubMed  CAS  Google Scholar 

  67. Werness B, Levine A, Howley P. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science. 1990;248(4951):76–9.

    Article  PubMed  CAS  Google Scholar 

  68. Gewin L, Myers H, Kiyono T, Galloway DA. Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev. 2004;18(18):2269–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Katzenellenbogen RA, Egelkrout EM, Vliet-Gregg P, Gewin LC, Gafken PR, Galloway DA. NFX1-123 and poly(A) binding proteins synergistically augment activation of telomerase in human papillomavirus type 16 E6-expressing cells. J Virol. 2007;81(8):3786–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Ronco LV, Karpova AY, Vidal M, Howley PM. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev. 1998;12(13):2061–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Tong X, Howley PM. The bovine papillomavirus E6 oncoprotein interacts with paxillin and disrupts the actin cytoskeleton. Proc Natl Acad Sci. 1997;94(9):4412–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Cavarelli J. Crystal structure of full-length Bovine Papillomavirus oncoprotein E6 in complex with LD1 motif of paxillin at 2.3A resolution. Protein Data Bank, Rutgers University;2011.

    Google Scholar 

  73. Srivastava K, Pickard A, McDade S, McCance DJ. p63 drives invasion in keratinocytes expressing HPV16 E6/E7 genes through regulation of Src-FAK signalling. Oncotarget. 2017;8(10):16202–19.

    Google Scholar 

  74. Boyer SN, Wazer DE, Band V. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res. 1996;56(20):4620–4.

    PubMed  CAS  Google Scholar 

  75. Khleif SN, DeGregori J, Yee CL, Otterson GA, Kaye FJ, Nevins JR, et al. Inhibition of cyclin D-CDK4/CDK6 activity is associated with an E2F-mediated induction of cyclin kinase inhibitor activity. Proc Natl Acad Sci. 1996;93(9):4350–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Zhang B, Laribee RN, Klemsz MJ, Roman A. Human papillomavirus type 16 E7 protein increases acetylation of histone H3 in human foreskin keratinocytes. Virology. 2004;329(1):189–98.

    Article  PubMed  CAS  Google Scholar 

  77. Menges CW, Baglia LA, Lapoint R, McCance DJ. Human papillomavirus type 16 E7 Up-regulates AKT activity through the Retinoblastoma protein. Cancer Res. 2006;66(11):5555–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Arroyo M, Bagchi S, Raychaudhuri P. Association of the human papillomavirus type 16 E7 protein with the S-phase-specific E2F-cyclin A complex. Mol Cell Biol. 1993;13(10):6537–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Dyson N, Guida P, Munger K, Harlow E. Homologous sequences in adenovirus E1A and human papillomavirus E7 proteins mediate interaction with the same set of cellular proteins. J Virol. 1992;66(12):6893–902.

    PubMed  PubMed Central  CAS  Google Scholar 

  80. McIntyre MC, Ruesch MN, Laimins LA. Human papillomavirus E7 oncoproteins bind a single form of cyclin E in a complex with cdk2 and p107. Virology. 1996;215(1):73–82.

    Article  PubMed  CAS  Google Scholar 

  81. Munger K, Werness BA, Dyson N, Phelps WC, Harlow E, Howley PM. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 1989;8(13):4099–105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Phelps WC, Bagchi S, Barnes JA, Raychaudhuri P, Kraus V, Munger K, et al. Analysis of trans activation by human papillomavirus type 16 E7 and adenovirus 12S E1A suggests a common mechanism. J Virol. 1991;65(12):6922–30.

    PubMed  PubMed Central  CAS  Google Scholar 

  83. Hausen HZ. Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J Natl Cancer Inst. 2000;92(9):690–8.

    Article  PubMed  Google Scholar 

  84. Bosch FX, Lorincz A, Munoz N, Meijer CJLM, Shah KV. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol. 2002;55(4):244–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Bosch FX, de Sanjose S. Chapter 1: human papillomavirus and cervical cancer–burden and assessment of causality. JNCI Monographs. 2003;2003(31):3–13.

    Article  Google Scholar 

  86. Sano D, Oridate N. The molecular mechanism of human papillomavirus-induced carcinogenesis in head and neck squamous cell carcinoma. Int J Clin Oncol. 2016;21(5):819–26.

    Article  PubMed  CAS  Google Scholar 

  87. Ragin CCR, Reshmi SC, Gollin SM. Mapping and analysis of HPV16 integration sites in a head and neck cancer cell line. Int J Cancer. 2004;110(5):701–9.

    Article  PubMed  CAS  Google Scholar 

  88. Wentzensen N. Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res. 2004;64(11):3878–84.

    Article  PubMed  CAS  Google Scholar 

  89. Hatano T, Sano D, Takahashi H, Hyakusoku H, Isono Y, Shimada S, et al. Identification of human papillomavirus (HPV) 16 DNA integration and the ensuing patterns of methylation in HPV-associated head and neck squamous cell carcinoma cell lines. Int J Cancer. 2017;140(7):1571–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Arias-Pulido H, Peyton CL, Joste NE, Vargas H, Wheeler CM. Human papillomavirus type 16 integration in cervical carcinoma in situ and in invasive cervical cancer. J Clin Microbiol. 2006;44(5):1755–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Mellin H, Dahlgren L, Munck-Wikland E, Lindholm J, Rabbani H, Kalantari M, et al. Human papillomavirus type 16 is episomal and a high viral load may be correlated to better prognosis in tonsillar cancer. Int J Cancer. 2002;102(2):152–8.

    Article  PubMed  CAS  Google Scholar 

  92. Koskinen WJ, Chen RW, Leivo I, Mäkitie A, Bäck L, Kontio R, et al. Prevalence and physical status of human papillomavirus in squamous cell carcinomas of the head and neck. Int J Cancer. 2003;107(3):401–6.

    Article  PubMed  CAS  Google Scholar 

  93. Badaracco G, Rizzo C, Mafera B, Pichi B, Giannarelli D, Rahimi S, et al. Molecular analyses and prognostic relevance of HPV in head and neck tumours. Oncology Reports. 2007.

    Google Scholar 

  94. Parfenov M, Pedamallu CS, Gehlenborg N, Freeman SS, Danilova L, Bristow CA, et al. Characterization of HPV and host genome interactions in primary head and neck cancers. Proc Natl Acad Sci U S A. 2014;111(43):15544–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Wilting SM, Smeets SJ, Snijders PJF, van Wieringen WN, van de Wiel MA, Meijer GA, et al. Genomic profiling identifies common HPVassociated chromosomal alterations in squamous cell carcinomas of cervix and head and neck. BMC Med Genet. 2009;2(1):32.

    Google Scholar 

  96. van Houten VMM, Snijders PJF, van den Brekel MWM, Kummer JA, Meijer CJLM, van Leeuwen B, et al. Biological evidence that human papillomaviruses are etiologically involved in a subgroup of head and neck squamous cell carcinomas. Int J Cancer. 2001;93(2):232–5.

    Article  PubMed  Google Scholar 

  97. Wiest T, Schwarz E, Enders C, Flechtenmacher C, Bosch FX. Involvement of intact HPV16 E6/E7 gene expression in head and neck cancers with unaltered p53 status and perturbed pRb cell cycle control. Oncogene. 2002;21(10):1510–7.

    Article  PubMed  CAS  Google Scholar 

  98. Ragin CCR, Taioli E, Weissfeld JL, White JS, Rossie KM, Modugno F, et al. 11q13 amplification status and human papillomavirus in relation to p16 expression defines two distinct etiologies of head and neck tumours. Br J Cancer. 2006;95(10):1432–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. The Cancer Genome Atlas N. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517(7536):576–82.

    Article  CAS  Google Scholar 

  100. Smeets SJ, Braakhuis BJM, Abbas S, Snijders PJF, Ylstra B, van de Wiel MA, et al. Genome-wide DNA copy number alterations in head and neck squamous cell carcinomas with or without oncogene-expressing human papillomavirus. Oncogene. 2005;25(17):2558–64.

    Article  CAS  Google Scholar 

  101. Schlecht NF, Burk RD, Adrien L, Dunne A, Kawachi N, Sarta C, et al. Gene expression profiles in HPV-infected head and neck cancer. J Pathol. 2007;213(3):283–93.

    Article  PubMed  CAS  Google Scholar 

  102. Slebos RJC, Yi Y, Ely K, Carter JJ, Evjen A, Zhang X, et al. Gene expression differences associated with human papillomavirus status in head and neck squamous cell carcinoma. Clin Cancer Res. 2006;12(3):701–9.

    Article  PubMed  CAS  Google Scholar 

  103. Bernard H-U, Burk RD, Chen Z, van Doorslaer K, Hausen H, de Villiers E-M. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology. 2010;401(1):70–9.

    Article  PubMed  CAS  Google Scholar 

  104. Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA. Virus taxonomy. London: Elsevier; 2005. p. 239–55.

    Google Scholar 

  105. de Villiers E-M. Cross-roads in the classification of papillomaviruses. Virology. 2013;445(1–2):2–10.

    Article  PubMed  CAS  Google Scholar 

  106. Chen Z, DeSalle R, Schiffman M, Herrero R, Burk RD. Evolutionary dynamics of variant genomes of human papillomavirus types 18, 45, and 97. J Virol. 2008;83(3):1443–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Chen Z, Schiffman M, Herrero R, DeSalle R, Anastos K, Segondy M, et al. Evolution and taxonomic classification of human papillomavirus 16 (HPV16)-related variant genomes: HPV31, HPV33, HPV35, HPV52, HPV58 and HPV67. PLoS One. 2011;6(5):e20183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Chen Z, Terai M, Fu L, Herrero R, DeSalle R, Burk RD. Diversifying selection in human papillomavirus type 16 lineages based on complete genome analyses. J Virol. 2005;79(11):7014–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Ho L, Chan SY, Burk RD, Das BC, Fujinaga K, Icenogle JP, et al. The genetic drift of human papillomavirus type 16 is a means of reconstructing prehistoric viral spread and the movement of ancient human populations. J Virol. 1993;67(11):6413–23.

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Ong CK, Chan SY, Campo MS, Fujinaga K, Mavromara-Nazos P, Labropoulou V, et al. Evolution of human papillomavirus type 18: an ancient phylogenetic root in Africa and intratype diversity reflect coevolution with human ethnic groups. J Virol. 1993;67(11):6424–31.

    PubMed  PubMed Central  CAS  Google Scholar 

  111. Yamada T, Manos MM, Peto J, Greer CE, Munoz N, Bosch FX, et al. Human papillomavirus type 16 sequence variation in cervical cancers: a worldwide perspective. J Virol. 1997;71(3):2463–72.

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Chen Z, Schiffman M, Herrero R, DeSalle R, Anastos K, Segondy M, et al. Evolution and taxonomic classification of alphapapillomavirus 7 complete genomes: HPV18, HPV39, HPV45, HPV59, HPV68 and HPV70. PLoS One. 2013;8(8):e72565.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Cornet I, Gheit T, Franceschi S, Vignat J, Burk RD, Sylla BS, et al. Human papillomavirus type 16 genetic variants: phylogeny and classification based on E6 and LCR. J Virol. 2012;86(12):6855–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Durst M, Gissmann L, Ikenberg H, zur Hausen H. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci. 1983;80(12):3812–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  115. Chen AA, Gheit T, Franceschi S, Tommasino M, Clifford GM. Human papillomavirus 18 genetic variation and cervical cancer risk worldwide. J Virol. 2015;89(20):10680–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Boshart M, Gissmann L, Ikenberg H, Kleinheinz A, Scheurlen W, zur Hausen H. A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J. 1984;3(5):1151–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Xi LF, Carter JJ, Galloway DA, Kuypers J, Hughes JP, Lee SK, et al. Acquisition and natural history of human papillomavirus type 16 variant infection among a cohort of female university students. Cancer Epidemiol Biomark Prev. 2002;11(4):343–51.

    Google Scholar 

  118. Makowsky R, Lhaki P, Wiener HW, Bhatta MP, Cullen M, Johnson DC, et al. Genomic diversity and phylogenetic relationships of human papillomavirus 16 (HPV16) in Nepal. Infect Genet Evol. 2016;46:7–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Jackson R, Rosa BA, Lameiras S, Cuninghame S, Bernard J, Floriano WB, et al. Functional variants of human papillomavirus type 16 demonstrate host genome integration and transcriptional alterations corresponding to their unique cancer epidemiology. BMC Genomics. 2016;17(1):851.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Berumen J, Ordonez RM, Lazcano E, Salmeron J, Galvan SC, Estrada RA, et al. Asian-American variants of human papillomavirus 16 and risk for cervical cancer: a case-control study. JNCI (Journal of the National Cancer Institute). 2001;93(17):1325–30.

    Article  CAS  Google Scholar 

  121. Hildesheim A, Schiffman M, Bromley C, Wacholder S, Herrero R, Rodriguez AC, et al. Human papillomavirus type 16 variants and risk of cervical cancer. JNCI (Journal of the National Cancer Institute). 2001;93(4):315–8.

    Article  CAS  Google Scholar 

  122. Matsumoto K, Yoshikawa H, Nakagava S, Tang X, Yasugi T, Kawana K, et al. Enhanced oncogenicity of human papillomavirus type 16 (HPV16) variants in Japanese population. Cancer Lett. 2000;156(2):159–65.

    Article  PubMed  CAS  Google Scholar 

  123. Villa LL, Caballero O, Ferenczy A, Sichero L, Rohan T, Franco EL, et al. Molecular variants of human papillomavirus types 16 and 18 preferentially associated with cervical neoplasia. J Gen Virol. 2000;81(12):2959–68.

    Article  PubMed  CAS  Google Scholar 

  124. Xi LF, Critchlow CW, Wheeler CM, Koutsky LA, Galloway DA, Kuypers J, et al. Risk of anal carcinoma in situ in relation to human papillomavirus type 16 variants. Cancer Res. 1998;58(17):3839–44.

    PubMed  CAS  Google Scholar 

  125. Xi LF, Koutsky LA, Galloway DA, Kiviat NB, Kuypers J, Hughes JP, et al. Genomic variation of human papillomavirus type 16 and risk for high grade cervical intraepithelial neoplasia. JNCI (Journal of the National Cancer Institute). 1997;89(11):796–802.

    Article  CAS  Google Scholar 

  126. Xi LF, Koutsky LA, Hildesheim A, Galloway DA, Wheeler CM, Winer RL, et al. Risk for high-grade cervical intraepithelial neoplasia associated with variants of human papillomavirus types 16 and 18. Cancer Epidemiol Biomark Prev. 2007;16(1):4–10.

    Article  CAS  Google Scholar 

  127. Nicolas-Parraga S, Alemany L, de Sanjose S, Bosch FX, Bravo IG. Differential HPV16 variant distribution in squamous cell carcinoma, adenocarcinoma and adenosquamous cell carcinoma. Int J Cancer. 2017;140(9):2092–100.

    Google Scholar 

  128. Mammas IN, Spandidos DA, Sourvinos G. Genomic diversity of human papillomaviruses (HPV) and clinical implications: an overview in adulthood and childhood. Infect Genet Evol. 2014;21:220–6.

    Article  PubMed  Google Scholar 

  129. Stoppler MC, Ching K, Stoppler H, Clancy K, Schlegel R, Icenogle J. Natural variants of the human papillomavirus type 16 E6 protein differ in their abilities to alter keratinocyte differentiation and to induce p53 degradation. J Virol. 1996;70(10):6987–93.

    PubMed  PubMed Central  CAS  Google Scholar 

  130. Hang D, Gao L, Sun M, Liu Y, Ke Y. Functional effects of sequence variations in the E6 and E2 genes of human papillomavirus 16 European and Asian variants. J Med Virol. 2014;86(4):618–26.

    Article  PubMed  CAS  Google Scholar 

  131. De la Cruz-Hernandez E, Garcia-Carranca A, Mohar-Betancourt A, Duenas-Gonzales A, Contreras-Paredes A, Perez-Cardenas E, et al. Differential splicing of E6 within human papillomavirus type 18 variants and functional consequences. J Gen Virol. 2005;86(9):2459–68.

    Article  PubMed  CAS  Google Scholar 

  132. Vazquez-Vega S, Sanchez-Suarez LP, Andrade-Cruz R, Castellanos-Juarez E, Contreras-Paredes A, Lizano-Soberon M, et al. Regulation of p14 ARF expression by HPV-18 E6 variants. J Med Virol. 2013;85(7):1215–21.

    Article  PubMed  CAS  Google Scholar 

  133. Chakrabarti O, Veeraraghavalu K, Tergaonkar V, Liu Y, Androphy EJ, Stanley MA, et al. Human papillomavirus type 16 E6 amino acid 83 variants enhance E6-mediated MAPK signaling and differentially regulate tumorigenesis by notch signaling and oncogenic Ras. J Virol. 2004;78(11):5934–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Contreras-Paredes A, De la Cruz-Hernández E, Martínez-Ramírez I, Dueñas-González A, Lizano M. E6 variants of human papillomavirus 18 differentially modulate the protein kinase B/phosphatidylinositol 3-kinase (akt/PI3K) signaling pathway. Virology. 2009;383(1):78–85.

    Article  PubMed  CAS  Google Scholar 

  135. Kämmer C, Tommasino M, Syrjänen S, Delius H, Hebling U, Warthorst U, et al. Variants of the long control region and the E6 oncogene in European human papillomavirus type 16 isolates: implications for cervical disease. Br J Cancer. 2002;86(2):269–73.

    Article  PubMed  PubMed Central  Google Scholar 

  136. May M, Dong XP, Beyer-Finkler E, Stubenrauch F, Fuchs PG, Pfister H. The E6/E7 promoter of extrachromosomal HPV16 DNA in cervical cancers escapes from cellular repression by mutation of target sequences for YY1. EMBO J. 1994;13(6):1460–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Park JS, Hwang ES, Lee CJ, Kim CJ, Rha JG, Kim SJ, et al. Mutational and functional analysis of HPV-16 URR derived from Korean cervical neoplasia. Gynecol Oncol. 1999;74(1):23–9.

    Article  PubMed  CAS  Google Scholar 

  138. Rose B, Tattersall M, Thompson C, Steger G, Pfister H, Cossart Y, et al. Point mutations in SP1 motifs in the upstream regulatory region of human papillomavirus type 18 isolates from cervical cancers increase promoter activity. J Gen Virol. 1998;79(7):1659–63.

    Article  PubMed  CAS  Google Scholar 

  139. Veress G, Szarka K, Gergely L, Pfister H, Dong XP. Functional significance of sequence variation in the E2 gene and the long control region of human papillomavirus type 16. J Gen Virol. 1999;80(4):1035–43.

    Article  PubMed  CAS  Google Scholar 

  140. Hubert WG. Variant upstream regulatory region sequences differentially regulate human papillomavirus type 16 DNA replication throughout the viral life cycle. J Virol. 2005;79(10):5914–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Chopjitt P, Pientong C, Bumrungthai S, Kongyingyoes B, Ekalaksananan T. Activities of E6 protein of human papillomavirus 16 Asian variant on miR-21 up-regulation and expression of human immune response genes. Asian Pac J Cancer Prev. 2015;16(9):3961–8.

    Article  PubMed  Google Scholar 

  142. Du J, Nordfors C, Näsman A, Sobkowiak M, Romanitan M, Dalianis T, et al. Human papillomavirus (HPV) 16 E6 variants in tonsillar cancer in comparison to those in cervical cancer in Stockholm, Sweden. PLoS One. 2012;7(4):e36239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Boscolo-Rizzo P, Da Mosto MC, Fuson R, Frayle-Salamanca H, Trevisan R, Del Mistro A. HPV-16 E6 L83V variant in squamous cell carcinomas of the upper aerodigestive tract. J Cancer Res Clin Oncol. 2008;135(4):559–66.

    Article  PubMed  CAS  Google Scholar 

  144. Markowitz Lauri E, Sternberg M, Dunne Eileen F, McQuillan G, Unger Elizabeth R. Seroprevalence of human papillomavirus types 6, 11, 16, and 18 in the United States: national health and nutrition examination survey 2003–2004. J Infect Dis. 2009;200(7):1059–67.

    Article  PubMed  CAS  Google Scholar 

  145. Liu G, Markowitz LE, Hariri S, Panicker G, Unger ER. Seroprevalence of 9 human papillomavirus types in the United States, 2005–2006. J Infect Dis. 2016;213(2):191–8.

    Article  PubMed  Google Scholar 

  146. Zhang Y, Waterboer T, Pawlita M, Sugar E, Minkoff H, Cranston RD, et al. Human papillomavirus (HPV) 16 E6 seropositivity is elevated in subjects with oral HPV16 infection. Cancer Epidemiol. 2016;43:30–4.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Gillison ML, Broutian T, Pickard RKL, Tong Z-Y, Xiao W, Kahle L, et al. Prevalence of oral HPV infection in the United States, 2009–2010. JAMA. 2012;307(7):693.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Chaturvedi AK, Graubard BI, Broutian T, Pickard RKL, Tong Z, Xiao W, et al. NHANES 2009–2012 findings: association of sexual behaviors with higher prevalence of oral oncogenic human papillomavirus infections in U.S. men. Cancer Res. 2015;75(12):2468–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Safaeian M, Porras C, Schiffman M, Rodriguez AC, Wacholder S, Gonzalez P, et al. Epidemiological study of anti-HPV16/18 seropositivity and subsequent risk of HPV16 and -18 infections. JNCI (Journal of the National Cancer Institute). 2010;102(21):1653–62.

    Article  CAS  Google Scholar 

  150. D’Souza G, Kluz N, Wentz A, Youngfellow R, Griffioen A, Stammer E, et al. Oral human papillomavirus (HPV) infection among unvaccinated high-risk young adults. Cancers. 2014;6(3):1691–704.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Kreimer AR, Pierce Campbell CM, Lin H-Y, Fulp W, Papenfuss MR, Abrahamsen M, et al. Incidence and clearance of oral human papillomavirus infection in men: the HIM cohort study. Lancet. 2013;382(9895):877–87.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ferlay JSI, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F. GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide: IARC CancerBase No. 11 [Internet]. Lyon: International Agency for Research on Cancer. 2013.: Available from: http://globocan.iarc.fr/. Accessed on day/month/year.

  153. Howlader NNA, Krapcho M, Miller D, Bishop K, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA, editors. SEER cancer statistics review, 1975–2013. National Cancer Institute Bethesda, MD, https://seer.cancer.gov/csr/1975_2013/. based on November 2015 SEER data submission, posted to the SEER web site. 2016; April.

  154. Jemal A, Simard EP, Dorell C, Noone AM, Markowitz LE, Kohler B, et al. Annual report to the nation on the status of cancer, 1975–2009, featuring the burden and trends in human papillomavirus(HPV)-associated cancers and HPV vaccination coverage levels. J Natl Cancer Inst. 2013;105(3):175–201.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Gillison ML, Chaturvedi AK, Anderson WF, Fakhry C. Epidemiology of human papillomavirus-positive head and neck squamous cell carcinoma. J Clin Oncol (Official Journal of the American Society of Clinical Oncology). 2015;33(29):3235–42.

    Article  CAS  Google Scholar 

  156. Maritz GS, Mutemwa M. Tobacco smoking: patterns, health consequences for adults, and the long-term health of the offspring. Glob J Health Sci. 2012;4(4):62–75.

    Google Scholar 

  157. Näsman A, Attner P, Hammarstedt L, Du J, Eriksson M, Giraud G, et al. Incidence of human papillomavirus (HPV) positive tonsillar carcinoma in Stockholm, Sweden: an epidemic of viral-induced carcinoma? Int J Cancer. 2009;125(2):362–6.

    Article  PubMed  CAS  Google Scholar 

  158. Roberts JC, Li G, Reitzel LR, Wei Q, Sturgis EM. No evidence of sex-related survival disparities among head and neck cancer patients receiving similar multidisciplinary care: a matched-pair analysis. Clin Cancer Res. 2010;16(20):5019–27.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ragin CCR, Taioli E. Survival of squamous cell carcinoma of the head and neck in relation to human papillomavirus infection: review and meta-analysis. Int J Cancer. 2007;121(8):1813–20.

    Article  PubMed  CAS  Google Scholar 

  160. Gillison ML, D’Souza G, Westra W, Sugar E, Xiao W, Begum S, et al. Distinct risk factor profiles for human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck cancers. JNCI J Natl Cancer Inst. 2008;100(6):407–20.

    Article  PubMed  Google Scholar 

  161. Mbulawa ZZA, Johnson LF, Marais DJ, Coetzee D, Williamson A-L. Risk factors for oral human papillomavirus in heterosexual couples in an African setting. J Infect. 2014;68(2):185–9.

    Article  PubMed  Google Scholar 

  162. Vogt SL, Gravitt PE, Martinson NA, Hoffmann J, D’Souza G. Concordant oral-genital HPV infection in South Africa couples: evidence for transmission. Front Oncol. 2013;3:303.

    Google Scholar 

  163. Beachler DC, Sugar EA, Margolick JB, Weber KM, Strickler HD, Wiley DJ, et al. Risk factors for acquisition and clearance of oral human papillomavirus infection among HIV-infected and HIV-uninfected adults. Am J Epidemiol. 2014;181(1):40–53.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Beachler DC, Weber KM, Margolick JB, Strickler HD, Cranston RD, Burk RD, et al. Risk factors for oral HPV infection among a high prevalence population of HIV-positive and at-risk HIV-negative adults. Cancer Epidemiol Biomark Prev. 2011;21(1):122–33.

    Article  Google Scholar 

  165. Steinau M, Saraiya M, Goodman MT, Peters ES, Watson M, Cleveland JL, et al. Human papillomavirus prevalence in oropharyngeal cancer before vaccine introduction, United States. Emerg Infect Dis. 2014;20(5):822–8.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Gillison ML, Chaturvedi AK, Lowy DR. HPV prophylactic vaccines and the potential prevention of noncervical cancers in both men and women. Cancer. 2008;113(10 Suppl):3036–46.

    Article  PubMed  Google Scholar 

  167. Braakhuis BJM, Snijders PJF, Keune WJH, Meijer CJLM, Ruijter-Schippers HJ, Leemans CR, et al. Genetic patterns in head and neck cancers that contain or lack transcriptionally active human papillomavirus. JNCI (Journal of the Natl Cancer Institute). 2004;96(13):998–1006.

    Article  CAS  Google Scholar 

  168. Gillison ML, Zhang Q, Jordan R, Xiao W, Westra WH, Trotti A, et al. Tobacco smoking and increased risk of death and progression for patients with p16-positive and p16-negative oropharyngeal cancer. J Clin Oncol. 2012;30(17):2102–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Chaturvedi AK, D’Souza G, Gillison ML, Katki HA. Burden of HPV-positive oropharynx cancers among ever and never smokers in the U.S. population. Oral Oncol. 2016;60:61–7.

    Article  PubMed  Google Scholar 

  170. Jung AC, Briolat J, Millon R, de Reynies A, Rickman D, Thomas E, et al. Biological and clinical relevance of transcriptionally active human papillomavirus (HPV) infection in oropharynx squamous cell carcinoma. Int J Cancer. 2010;126(8):1882–94.

    Article  PubMed  CAS  Google Scholar 

  171. Deng Z, Hasegawa M, Kiyuna A, Matayoshi S, Uehara T, Agena S, et al. Viral load, physical status, and E6/E7 mRNA expression of human papillomavirus in head and neck squamous cell carcinoma. Head Neck. 2013;35(6):800–8.

    Article  PubMed  Google Scholar 

  172. de Souza DLB, de Camargo Cancela M, Pérez MMB, Curado M-P. Trends in the incidence of oral cavity and oropharyngeal cancers in Spain. Head Neck. 2011;34(5):649–54.

    Article  PubMed  Google Scholar 

  173. Forte T, Niu J, Lockwood GA, Bryant HE. Incidence trends in head and neck cancers and human papillomavirus (HPV)-associated oropharyngeal cancer in Canada, 1992–2009. Cancer Causes Control. 2012;23(8):1343–8.

    Article  PubMed  Google Scholar 

  174. Golas SM. Trends in palatine tonsillar cancer incidence and mortality rates in the United States. Community Dent Oral Epidemiol. 2007;35(2):98–108.

    Article  PubMed  Google Scholar 

  175. McGorray SP, Guo Y, Logan H. Trends in incidence of oral and pharyngeal carcinoma in Florida: 1981–2008. J Public Health Dent. 2011;72(1):68–74.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Edelstein ZR, Schwartz SM, Hawes S, Hughes JP, Feng Q, Stern ME, et al. Rates and determinants of oral human papillomavirus infection in young men. Sex Transm Dis. 2012;39(11):860–7.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Attner P, Du J, Näsman A, Hammarstedt L. Ramqvist Tr, Lindholm J, et al. The role of human papillomavirus in the increased incidence of base of tongue cancer. Int J Cancer. 2010;126(12):2879–84.

    Google Scholar 

  178. Castellsagué X, Mena M, Alemany L. Epidemiology of HPV-positive tumors in Europe and in the world. In: HPV infection in head and neck cancer. Cham: Springer International Publishing; 2016. p. 27–35.

    Google Scholar 

  179. Chaturvedi AK, Engels EA, Pfeiffer RM, Hernandez BY, Xiao W, Kim E, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol. 2011;29(32):4294–301.

    Article  PubMed  PubMed Central  Google Scholar 

  180. D’Souza G, Zhang HH, D’Souza WD, Meyer RR, Gillison ML. Moderate predictive value of demographic and behavioral characteristics for a diagnosis of HPV16-positive and HPV16-negative head and neck cancer. Oral Oncol. 2010;46(2):100–4.

    Article  PubMed  Google Scholar 

  181. Ernster JA, Sciotto CG, O’Brien MM, Finch JL, Robinson LJ, Willson T, et al. Rising incidence of oropharyngeal cancer and the role of oncogenic human papilloma virus. Laryngoscope. 2007;117(12):2115–28.

    Article  PubMed  Google Scholar 

  182. Fakhry C, Westra WH, Li S, Cmelak A, Ridge JA, Pinto H, et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. JNCI (Journal of the National Cancer Institute). 2008;100(4):261–9.

    Article  CAS  Google Scholar 

  183. Kingma DW, Allen RA, Moore W, Caughron SK, Melby M, Gillies EM, et al. HPV genotype distribution in oral and oropharyngeal squamous cell carcinoma using seven in vitro amplification assays. Anticancer Res. 2010;30(12):5099–104.

    PubMed  Google Scholar 

  184. Mehanna H, Franklin N, Compton N, Robinson M, Powell N, Biswas-Baldwin N, et al. Geographic variation in human papillomavirus-related oropharyngeal cancer: data from 4 multinational randomized trials. Head Neck. 2016;38(Suppl 1):E1863–9.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Mehanna H, Beech T, Nicholson T, El-Hariry I, McConkey C, Paleri V, et al. Prevalence of human papillomavirus in oropharyngeal and nonoropharyngeal head and neck cancer-systematic review and meta-analysis of trends by time and region. Head Neck. 2012;35(5):747–55.

    Article  PubMed  Google Scholar 

  186. Rodrigo JP, Heideman DA, Garcia-Pedrero JM, Fresno MF, Brakenhoff RH, Diaz Molina JP, et al. Time trends in the prevalence of HPV in oropharyngeal squamous cell carcinomas in northern Spain (1990–2009). Int J Cancer. 2014;134(2):487–92.

    Article  PubMed  CAS  Google Scholar 

  187. Brown LM, Check DP, Devesa SS. Oral cavity and pharynx cancer incidence trends by subsite in the United States: changing gender patterns. Journal of Oncology. 2012;2012:1–10.

    Google Scholar 

  188. Cole L, Polfus L, Peters ES. Examining the incidence of human papillomavirus-associated head and neck cancers by race and ethnicity in the U.S., 1995–2005. PLoS One. 2012;7(3):e32657.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Brandsma JL, Abramson AL. Association of papillomavirus with cancers of the head and neck. Arch Otolaryngol Head Neck Surg. 1989;115(5):621–5.

    Article  PubMed  CAS  Google Scholar 

  190. Chen R, Sehr P, Waterboer T, Leivo I, Pawlita M, Vaheri A, et al. Presence of DNA of human papillomavirus 16 but no other types in tumor-free tonsillar tissue. J Clin Microbiol. 2005;43(3):1408–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. do Sacramento PR, Babeto E, Colombo J, Cabral Ruback MJ, Bonilha JL, Fernandes AM, et al. The prevalence of human papillomavirus in the oropharynx in healthy individuals in a Brazilian population. J Med Virol. 2006;78(5):614–8.

    Article  PubMed  Google Scholar 

  192. Duray A, Descamps G, Bettonville M, Sirtaine N, Ernoux-Neufcoeur P, Guenin S, et al. High prevalence of high-risk human papillomavirus in palatine tonsils from healthy children and adults. Otolaryngol Head Neck Surg. 2011;145(2):230–5.

    Article  PubMed  Google Scholar 

  193. Ernster JA, Sciotto CG, O’Brien MM, Robinson LJ, Willson T. Prevalence of oncogenic human papillomavirus 16 and 18 in the palatine tonsils of the general adult population. Arch Otolaryngol Head Neck Surg. 2009;135(6):554.

    Article  PubMed  Google Scholar 

  194. Fukushima K, Ogura H, Watanabe S, Yabe Y, Masuda Y. Human papillomavirus type 16 DNA detected by the polymerase chain reaction in non-cancer tissues of the head and neck. Eur Arch Otorhinolaryngol. 1994;251(2):109–12.

    Google Scholar 

  195. Mammas IN, Sourvinos G, Michael C, Spandidos DA. Human papilloma virus in hyperplastic tonsillar and adenoid tissues in children. Pediatr Infect Dis J. 2006;25(12):1158–62.

    Article  PubMed  Google Scholar 

  196. Sisk J, Schweinfurth JM, Wang XT, Chong K. Presence of human papillomavirus DNA in tonsillectomy specimens. Laryngoscope. 2006;116(8):1372–4.

    Article  PubMed  CAS  Google Scholar 

  197. Snijders PJF, Cromme FV, Van Brule AJCD, Schrijnemakers HFJ, Snow GB, Meijer CJLM, et al. Prevalence and expression of human papillomavirus in tonsillar carcinomas, indicating a possible viral etiology. Int J Cancer. 1992;51(6):845–50.

    Article  PubMed  CAS  Google Scholar 

  198. Strome SE, Savva A, Brissett AE, Gostout BS, Lewis J, Clayton AC, et al. Squamous cell carcinoma of the tonsils: a molecular analysis of HPV associations. Clin Cancer Res (An Official Journal of the American Association for Cancer Research). 2002;8(4):1093–100.

    CAS  Google Scholar 

  199. Tominaga S, Fukushima K, Nishizaki K, Watanabe S, Masuda Y, Ogura H. Presence of human papillomavirus type 6f in tonsillar condyloma acuminatum and clinically normal tonsillar mucosa. Jpn J Clin Oncol. 1996;26(6):393–7.

    Article  PubMed  CAS  Google Scholar 

  200. Watanabe S, Ogura H, Fukushima K, Yabe Y. Comparison of Virapap filter hybridization with polymerase chain reaction and Southern blot hybridization methods for detection of human papillomavirus in tonsillar and pharyngeal cancers. Eur Arch Otorhinolaryngol. 1993;250(2):115–9.

    Google Scholar 

  201. Fouret P, Martin F, Flahault A, Saint-Guily JL. Human papillomavirus infection in the malignant and premalignant head and neck epithelium. Diagn Mol Pathol. 1995;4(2):122–7.

    Article  PubMed  CAS  Google Scholar 

  202. Frisch M, Biggar RJ. Aetiological parallel between tonsillar and anogenital squamous-cell carcinomas. Lancet. 1999;354(9188):1442–3.

    Article  PubMed  CAS  Google Scholar 

  203. Rose Ragin CC, Taioli E. Second primary head and neck tumor risk in patients with cervical cancer—SEER data analysis. Head Neck. 2007;30(1):58–66.

    Article  Google Scholar 

  204. Sikora AG, Morris LG, Sturgis EM. Bidirectional association of anogenital and oral cavity/pharyngeal carcinomas in men. Arch Otolaryngol Head Neck Surg. 2009;135(4):402.

    Article  PubMed  Google Scholar 

  205. Dahlstrom KR, Burchell AN, Ramanakumar AV, Rodrigues A, Tellier PP, Hanley J, et al. Sexual transmission of oral human papillomavirus infection among men. Cancer Epidemiol Biomark Prev. 2014;23(12):2959–64.

    Article  CAS  Google Scholar 

  206. Crawford R, Grignon A-L, Kitson S, Winder DM, Ball SLR, Vaughan K, et al. High prevalence of HPV in non-cervical sites of women with abnormal cervical cytology. BMC Cancer. 2011;11(1):473.

    Google Scholar 

  207. Dost F, Ford PJ, Farah CS. Heightened risk of second primary carcinoma of the head and neck following cervical neoplasia. Head Neck. 2013;36(8):1132–7.

    Article  PubMed  Google Scholar 

  208. Hemminki K, Dong C, Frisch M. Tonsillar and other upper aerodigestive tract cancers among cervical cancer patients and their husbands. Eur J Cancer Prev. 2000;9(6):433–7.

    Article  PubMed  CAS  Google Scholar 

  209. D’Souza G, Kreimer AR, Viscidi R, Pawlita M, Fakhry C, Koch WM, et al. Case–control study of human papillomavirus and oropharyngeal cancer. N Engl J Med. 2007;356(19):1944–56.

    Article  PubMed  Google Scholar 

  210. D’Souza G, Agrawal Y, Halpern J, Bodison S, Gillison Maura L. Oral sexual behaviors associated with prevalent oral human papillomavirus infection. J Infect Dis. 2009;199(9):1263–9.

    Article  PubMed  Google Scholar 

  211. Pickard RKL, Xiao W, Broutian TR, He X, Gillison ML. The prevalence and incidence of oral human papillomavirus infection among young men and women, aged 18–30 years. Sex Transm Dis. 2012;39(7):559–66.

    Article  PubMed  Google Scholar 

  212. Dahlstrom KR, Li G, Tortolero-Luna G, Wei Q, Sturgis EM. Differences in history of sexual behavior between patients with oropharyngeal squamous cell carcinoma and patients with squamous cell carcinoma at other head and neck sites. Head Neck. 2010;33(6):847–55.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Heck JE, Berthiller J, Vaccarella S, Winn DM, Smith EM, Shan’gina O, et al. Sexual behaviours and the risk of head and neck cancers: a pooled analysis in the international head and neck cancer epidemiology (INHANCE) consortium. Int J Epidemiol. 2009;39(1):166–81.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Lassen P, Eriksen JG, Hamilton-Dutoit S, Tramm T, Alsner J, Overgaard J. Effect of HPV-associated p16INK4A expression on response to radiotherapy and survival in squamous cell carcinoma of the head and neck. J Clin Oncol. 2009;27(12):1992–8.

    Article  PubMed  CAS  Google Scholar 

  215. Lassen P, Eriksen JG, Hamilton-Dutoit S, Tramm T, Alsner J, Overgaard J. HPV-associated p16-expression and response to hypoxic modification of radiotherapy in head and neck cancer. Radiother Oncol. 2010;94(1):30–5.

    Article  PubMed  CAS  Google Scholar 

  216. Bossi P, Orlandi E, Miceli R, Perrone F, Guzzo M, Mariani L, et al. Treatment-related outcome of oropharyngeal cancer patients differentiated by HPV dictated risk profile: a tertiary cancer centre series analysis. Ann Oncol. 2014;25(3):694–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tân PF, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363(1):24–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Granata R, Miceli R, Orlandi E, Perrone F, Cortelazzi B, Franceschini M, et al. Tumor stage, human papillomavirus and smoking status affect the survival of patients with oropharyngeal cancer: an Italian validation study. Ann Oncol. 2011;23(7):1832–7.

    Article  PubMed  Google Scholar 

  219. Urban D, Corry J, Rischin D. What is the best treatment for patients with human papillomavirus-positive and -negative oropharyngeal cancer? Cancer. 2014;120(10):1462–70.

    Article  PubMed  Google Scholar 

  220. Attner P, Nasman A, Du J, Hammarstedt L, Ramqvist T, Lindholm J, et al. Survival in patients with human papillomavirus positive tonsillar cancer in relation to treatment. Int J Cancer. 2012;131(5):1124–30.

    Article  PubMed  CAS  Google Scholar 

  221. Marur S, Li S, Cmelak AJ, Gillison ML, Zhao WJ, Ferris RL, et al. E1308: Phase II trial of induction chemotherapy followed by reduced-dose radiation and weekly Cetuximab in patients with HPV-associated resectable squamous cell carcinoma of the oropharynx- ECOG-ACRIN Cancer Research Group. J Clin Oncology Off J Am Soc Clin Oncol. 2016:JCO2016683300.

    Google Scholar 

  222. Chen AM, Felix C, Wang PC, Hsu S, Basehart V, Garst J, et al. Reduced-dose radiotherapy for human papillomavirus-associated squamous-cell carcinoma of the oropharynx: a single-arm, phase 2 study. Lancet Oncol. 2017;18(6):803–11.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Settle K, Posner MR, Schumaker LM, Tan M, Suntharalingam M, Goloubeva O, et al. Racial survival disparity in head and neck cancer results from low prevalence of human papillomavirus infection in black oropharyngeal cancer patients. Cancer Prev Res. 2009;2(9):776–81.

    Article  Google Scholar 

  224. Chernock RD, Zhang Q, El-Mofty SK, Thorstad WL, Lewis JS. Human papillomavirus–related squamous cell carcinoma of the oropharynx. Arch Otolaryngol Head Neck Surg. 2011;137(2):163.

    Article  PubMed  Google Scholar 

  225. Worsham MJ, Stephen JK, Mahan M, Chen KM, Schweitzer V, Havard S, et al. HPV improves survival for African Americans with throat cancer. Sci Newsline Med Healthcare. 2012.

    Google Scholar 

  226. Worsham MJ, Stephen JK, Chen KM, Mahan M, Schweitzer V, Havard S, et al. Improved survival with HPV among African Americans with oropharyngeal cancer. Clin Cancer Res. 2013;19(9):2486–92.

    Article  PubMed  PubMed Central  Google Scholar 

  227. Ragin C, Liu JC, Jones G, Shoyele O, Sowunmi B, Kennett R, et al. Prevalence of HPV infection in racial-ethnic subgroups of head and neck cancer patients. Carcinogenesis. 2016;38(2):218–29.

    Google Scholar 

  228. Isayeva T, Xu J, Dai Q, Whitley AC, Bonner J, Nabell L, et al. African Americans with oropharyngeal carcinoma have significantly poorer outcomes despite similar rates of human papillomavirus-mediated carcinogenesis. Hum Pathol. 2014;45(2):310–9.

    Article  PubMed  CAS  Google Scholar 

  229. Liu JC, Parajuli S, Blackman E, Gibbs D, Ellis A, Hull A, et al. High prevalence of discordant human papillomavirus and p16 oropharyngeal squamous cell carcinomas in an African American cohort. Head Neck. 2016;38(Suppl 1):E867–72.

    Article  PubMed  Google Scholar 

  230. Isayeva T, Xu J, Ragin C, Dai Q, Cooper T, Carroll W, et al. The protective effect of p16(INK4a) in oral cavity carcinomas: p16(Ink4A) dampens tumor invasion-integrated analysis of expression and kinomics pathways. Mod Pathol (An Official Journal of the United States and Canadian Academy of Pathology, Inc.). 2015;28(5):631–53.

    Article  CAS  Google Scholar 

  231. Combes JD, Franceschi S. Role of human papillomavirus in non-oropharyngeal head and neck cancers. Oral Oncol. 2014;50(5):370–9.

    Article  PubMed  CAS  Google Scholar 

  232. Jayaprakash V, Reid M, Hatton E, Merzianu M, Rigual N, Marshall J, et al. Human papillomavirus types 16 and 18 in epithelial dysplasia of oral cavity and oropharynx: a meta-analysis, 1985–2010. Oral Oncol. 2011;47(11):1048–54.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Syrjänen S, Lodi G, von Bültzingslöwen I, Aliko A, Arduino P, Campisi G, et al. Human papillomaviruses in oral carcinoma and oral potentially malignant disorders: a systematic review. Oral Dis. 2011;17:58–72.

    Article  PubMed  Google Scholar 

  234. Hobbs CGL, Sterne JAC, Bailey M, Heyderman RS, Birchall MA, Thomas SJ. Human papillomavirus and head and neck cancer: a systematic review and meta-analysis. Clin Otolaryngol. 2006;31(4):259–66.

    Article  PubMed  CAS  Google Scholar 

  235. Taberna M, Resteghini C, Swanson B, Pickard RK, Jiang B, Xiao W, et al. Low etiologic fraction for human papillomavirus in larynx squamous cell carcinoma. Oral Oncol. 2016;61:55–61.

    Article  PubMed  CAS  Google Scholar 

  236. Brown LM. Epidemiology of alcohol-associated cancers. Alcohol. 2005;35(3):161–8.

    Article  PubMed  Google Scholar 

  237. LaVallee RA, Yi H-Y. Apparent per capita alcohol consumption: national, state, and regional trends, 1977–2009. Surveillance Report #92. National Institute on Alcohol Abuse and Alcoholism Division of Epidemiology and Prevention Research Alcohol Epidemiologic Data System. 2012.

    Google Scholar 

  238. Services. UDoHaH. Preventing tobacco use among young people: a report of the surgeon general. . Atlanta, Ga, S Dept of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking on Health. 1994.

    Google Scholar 

  239. Sturgis EM, Cinciripini PM. Trends in head and neck cancer incidence in relation to smoking prevalence. Cancer. 2007;110(7):1429–35.

    Article  PubMed  Google Scholar 

  240. Services ALARaP. Trends in tobacco use ref type: electronic citation. 2012.

    Google Scholar 

  241. Müller S, Pan Y, Li R, Chi AC. Changing trends in oral squamous cell carcinoma with particular reference to young patients: 1971–2006. The Emory university experience. Head Neck Pathol. 2008;2(2):60–6.

    Article  PubMed  PubMed Central  Google Scholar 

  242. Schantz SP, Yu G-P. Head neck cancer incidence trends in young Americans, 1973–1997, with a special analysis for tongue cancer. Arch Otolaryngol Head Neck Surg. 2002;128(3):268.

    Article  PubMed  Google Scholar 

  243. Shiboski CH, Schmidt BL, Jordan RCK. Tongue and tonsil carcinoma. Cancer. 2005;103(9):1843–9.

    Article  PubMed  Google Scholar 

  244. Saba NF, Goodman M, Ward K, Flowers C, Ramalingam S, Owonikoko T, et al. Gender and ethnic disparities in incidence and survival of squamous cell carcinoma of the oral tongue, base of tongue, and tonsils: a surveillance, epidemiology and end results program-based analysis. Oncology. 2011;81(1):12–20.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Elango KJ, Suresh A, Erode EM, Subhadradevi L, Ravindran HK, Iyer SK, et al. Role of human papilloma virus in oral tongue squamous cell carcinoma. Asian Pac J Cancer Prev. 2011;12(4):889–96.

    PubMed  Google Scholar 

  246. Fakhry C, Westra WH, Wang SJ, van Zante A, Zhang Y, Rettig E, et al. The prognostic role of sex, race, and human papillomavirus in oropharyngeal and nonoropharyngeal head and neck squamous cell cancer. Cancer. 2017;123(9):1566–75.

    Google Scholar 

  247. Chen X, Gao L, Sturgis EM, Liang Z, Zhu Y, Xia X, et al. HPV16 DNA and integration in normal and malignant epithelium: Implications for the etiology of laryngeal squamous cell carcinoma. Ann Oncol. 2017;28(5):1105–10.

    Google Scholar 

  248. Duray A, Descamps G, Decaestecker C, Remmelink M, Sirtaine N, Lechien J, et al. Human papillomavirus DNA strongly correlates with a poorer prognosis in oral cavity carcinoma. Laryngoscope. 2012;122(7):1558–65.

    Article  PubMed  CAS  Google Scholar 

  249. Isayeva T, Li Y, Maswahu D, Brandwein-Gensler M. Human papillomavirus in non-oropharyngeal head and neck cancers: a systematic literature review. Head Neck Pathol. 2012;6(S1):104–20.

    Article  PubMed Central  Google Scholar 

  250. Lingen MW, Xiao W, Schmitt A, Jiang B, Pickard R, Kreinbrink P, et al. Low etiologic fraction for high-risk human papillomavirus in oral cavity squamous cell carcinomas. Oral Oncol. 2013;49(1):1–8.

    Article  PubMed  Google Scholar 

  251. Li X, Gao L, Li H, Gao J, Yang Y, Zhou F, et al. Human papillomavirus infection and laryngeal cancer risk: a systematic review and meta-analysis. J Infect Dis. 2012;207(3):479–88.

    Article  PubMed  CAS  Google Scholar 

  252. Stephen JK, Chen KM, Shah V, Havard S, Lu M, Schweitzer VP, et al. Human papillomavirus outcomes in an access-to-care laryngeal cancer Cohort. Otolaryngol Head Neck Surg. 2012;146(5):730–8.

    Article  PubMed  PubMed Central  Google Scholar 

  253. Wilson DD, Rahimi AS, Saylor DK, Stelow EB, Jameson MJ, Shonka DC, et al. p16 not a prognostic marker for hypopharyngeal squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2012;138(6):556.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille C. R. Ragin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deneka, A.Y., Liu, J.C., Ragin, C.C. (2018). Biology and Epidemiology of Human Papillomavirus-Related Head and Neck Cancer. In: Burtness, B., Golemis, E. (eds) Molecular Determinants of Head and Neck Cancer. Current Cancer Research. Humana Press, Cham. https://doi.org/10.1007/978-3-319-78762-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78762-6_20

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-78761-9

  • Online ISBN: 978-3-319-78762-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics