Skip to main content

APOBEC as an Endogenous Mutagen in Cancers of the Head and Neck

  • Chapter
  • First Online:
Molecular Determinants of Head and Neck Cancer

Part of the book series: Current Cancer Research ((CUCR))

  • 665 Accesses

Abstract

Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins are a family of cytidine deaminases that play important roles in diverse physiological processes in humans. APOBEC3-driven cytidine deamination results in a C-to-U conversion in target nucleotides, classifying this biological activity as a DNA-/RNA-editing mechanism. In recent years, biochemical, cellular, and bioinformatics studies have supported a role for APOBEC3 proteins in the etiology of human cancers, based on their ability to mutate genomic DNA. In this chapter, we provide a thorough review of recent studies that have implicated APOBEC3 in a number of diverse cancers, including head and neck cancers. These studies suggest that APOBEC3-dependent mutations are most associated with squamous cell carcinomas of the head and neck and may be linked to human papillomavirus (HPV) expression and production of neoantigens. Cell-based and structural evidence corroborates the initial bioinformatics data on APOBEC3 function. In conclusion, we raise several prospects for targeted therapeutic avenues including potential immunotherapy options that can leverage neoantigens generated from APOBEC activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teng B, Burant CF, Davidson NO. Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science (New York, NY). 1993;260:1816–9.

    Article  CAS  Google Scholar 

  2. Navaratnam N, et al. The p27 catalytic subunit of the apolipoprotein B mRNA editing enzyme is a cytidine deaminase. J Biol Chem. 1993;268:20709–12.

    CAS  PubMed  Google Scholar 

  3. Driscoll DM, Zhang Q. Expression and characterization of p27, the catalytic subunit of the apolipoprotein B mRNA editing enzyme. J Biol Chem. 1994;269:19843–7.

    CAS  PubMed  Google Scholar 

  4. Petersen-Mahrt SK, Harris RS, Neuberger MS. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature. 2002;418:99–103. https://doi.org/10.1038/nature00862.

    Article  CAS  PubMed  Google Scholar 

  5. Muramatsu M, et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem. 1999;274:18470–6.

    Article  CAS  PubMed  Google Scholar 

  6. Muramatsu M, et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102:553–63.

    Article  CAS  PubMed  Google Scholar 

  7. Jarmuz A, et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics. 2002;79:285–96. https://doi.org/10.1006/geno.2002.6718.

    Article  CAS  PubMed  Google Scholar 

  8. Chiu YL, Greene WC. Multifaceted antiviral actions of APOBEC3 cytidine deaminases. Trends Immunol. 2006;27:291–7. https://doi.org/10.1016/j.it.2006.04.003.

    Article  CAS  PubMed  Google Scholar 

  9. Harris RS, Petersen-Mahrt SK, Neuberger MS. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol Cell. 2002;10:1247–53.

    Article  CAS  PubMed  Google Scholar 

  10. Salter JD, Bennett RP, Smith HC. The APOBEC protein family: united by structure, divergent in function. Trends Biochem Sci. 2016;41:578–94. https://doi.org/10.1016/j.tibs.2016.05.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhang H, et al. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature. 2003;424:94–8. https://doi.org/10.1038/nature01707.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Mangeat B, et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature. 2003;424:99–103. https://doi.org/10.1038/nature01709.

    Article  PubMed  CAS  Google Scholar 

  13. Hakata Y, Landau NR. Reversed functional organization of mouse and human APOBEC3 cytidine deaminase domains. J Biol Chem. 2006;281:36624–31. https://doi.org/10.1074/jbc.M604980200.

    Article  PubMed  CAS  Google Scholar 

  14. Shi K, Carpenter MA, Kurahashi K, Harris RS, Aihara H. Crystal structure of the DNA deaminase APOBEC3B catalytic domain. J Biol Chem. 2015;290:28120–30. https://doi.org/10.1074/jbc.M115.679951.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Belanger K, Savoie M, Rosales Gerpe MC, Couture JF, Langlois MA. Binding of RNA by APOBEC3G controls deamination-independent restriction of retroviruses. Nucleic Acids Res. 2013;41:7438–52. https://doi.org/10.1093/nar/gkt527.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Navarro F, et al. Complementary function of the two catalytic domains of APOBEC3G. Virology. 2005;333:374–86. https://doi.org/10.1016/j.virol.2005.01.011.

    Article  PubMed  CAS  Google Scholar 

  17. Huthoff H, Autore F, Gallois-Montbrun S, Fraternali F, Malim MH. RNA-dependent oligomerization of APOBEC3G is required for restriction of HIV-1. PLoS Pathog. 2009;5:e1000330. https://doi.org/10.1371/journal.ppat.1000330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Opi S, et al. Monomeric APOBEC3G is catalytically active and has antiviral activity. J Virol. 2006;80:4673–82. https://doi.org/10.1128/jvi.80.10.4673-4682.2006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Yu Q, et al. Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat Struct Mol Biol. 2004;11:435–42. https://doi.org/10.1038/nsmb758.

    Article  PubMed  CAS  Google Scholar 

  20. Burns MB, et al. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature. 2013;494:366–70. https://doi.org/10.1038/nature11881.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature. 2002;418:646–50. https://doi.org/10.1038/nature00939.

    Article  PubMed  CAS  Google Scholar 

  22. Lecossier D, Bouchonnet F, Clavel F, Hance AJ. Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science (New York, NY). 2003;300:1112. https://doi.org/10.1126/science.1083338.

    Article  CAS  Google Scholar 

  23. Harris RS, et al. DNA deamination mediates innate immunity to retroviral infection. Cell. 2003;113:803–9.

    Article  PubMed  CAS  Google Scholar 

  24. Mariani R, et al. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell. 2003;114:21–31.

    Article  PubMed  CAS  Google Scholar 

  25. Mehle A, et al. Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitin-proteasome pathway. J Biol Chem. 2004;279:7792–8. https://doi.org/10.1074/jbc.M313093200.

    Article  PubMed  CAS  Google Scholar 

  26. Shirakawa K, et al. Ubiquitination of APOBEC3 proteins by the Vif-Cullin5-ElonginB-ElonginC complex. Virology. 2006;344:263–6. https://doi.org/10.1016/j.virol.2005.10.028.

    Article  PubMed  CAS  Google Scholar 

  27. Zheng YH, et al. Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J Virol. 2004;78:6073–6. https://doi.org/10.1128/jvi.78.11.6073-6076.2004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Dang Y, Wang X, Esselman WJ, Zheng YH. Identification of APOBEC3DE as another antiretroviral factor from the human APOBEC family. J Virol. 2006;80:10522–33. https://doi.org/10.1128/jvi.01123-06.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Doehle BP, Schafer A, Wiegand HL, Bogerd HP, Cullen BR. Differential sensitivity of murine leukemia virus to APOBEC3-mediated inhibition is governed by virion exclusion. J Virol. 2005;79:8201–7. https://doi.org/10.1128/jvi.79.13.8201-8207.2005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Yu Q, et al. APOBEC3B and APOBEC3C are potent inhibitors of simian immunodeficiency virus replication. J Biol Chem. 2004;279:53379–86. https://doi.org/10.1074/jbc.M408802200.

    Article  CAS  PubMed  Google Scholar 

  31. Doehle BP, Schafer A, Cullen BR. Human APOBEC3B is a potent inhibitor of HIV-1 infectivity and is resistant to HIV-1 Vif. Virology. 2005;339:281–8. https://doi.org/10.1016/j.virol.2005.06.005.

    Article  CAS  PubMed  Google Scholar 

  32. Bogerd HP, et al. Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. Proc Natl Acad Sci U S A. 2006;103:8780–5. https://doi.org/10.1073/pnas.0603313103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Bogerd HP, Wiegand HL, Doehle BP, Lueders KK, Cullen BR. APOBEC3A and APOBEC3B are potent inhibitors of LTR-retrotransposon function in human cells. Nucleic Acids Res. 2006;34:89–95. https://doi.org/10.1093/nar/gkj416.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Muckenfuss H, et al. APOBEC3 proteins inhibit human LINE-1 retrotransposition. J Biol Chem. 2006;281:22161–72. https://doi.org/10.1074/jbc.M601716200.

    Article  CAS  PubMed  Google Scholar 

  35. Stenglein MD, Harris RS. APOBEC3B and APOBEC3F inhibit L1 retrotransposition by a DNA deamination-independent mechanism. J Biol Chem. 2006;281:16837–41. https://doi.org/10.1074/jbc.M602367200.

    Article  CAS  PubMed  Google Scholar 

  36. Chen KM, et al. Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature. 2008;452:116–9. https://doi.org/10.1038/nature06638.

    Article  CAS  PubMed  Google Scholar 

  37. Holden LG, et al. Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature. 2008;456:121–4. https://doi.org/10.1038/nature07357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Harjes E, et al. An extended structure of the APOBEC3G catalytic domain suggests a unique holoenzyme model. J Mol Biol. 2009;389:819–32. https://doi.org/10.1016/j.jmb.2009.04.031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Shandilya SM, et al. Crystal structure of the APOBEC3G catalytic domain reveals potential oligomerization interfaces. Structure (London, England : 1993). 2010;18:28–38. https://doi.org/10.1016/j.str.2009.10.016.

    Article  CAS  Google Scholar 

  40. Bohn MF, et al. The ssDNA mutator APOBEC3A is regulated by cooperative dimerization. Structure (London, England: 1993). 2015;23:903–11. https://doi.org/10.1016/j.str.2015.03.016.

    Article  CAS  Google Scholar 

  41. Shi K, et al. Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Nat Struct Mol Biol. 2017;24:131–9. https://doi.org/10.1038/nsmb.3344.

    Article  PubMed  CAS  Google Scholar 

  42. Kouno T, et al. Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity. Nat Commun. 2017;8:15024. https://doi.org/10.1038/ncomms15024.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Xiao X, Li SX, Yang H, Chen XS. Crystal structures of APOBEC3G N-domain alone and its complex with DNA. Nat Commun. 2016;7:12193. https://doi.org/10.1038/ncomms12193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Nik-Zainal S, et al. Mutational processes molding the genomes of 21 breast cancers. Cell. 2012;149:979–93. https://doi.org/10.1016/j.cell.2012.04.024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Alexandrov LB, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21. https://doi.org/10.1038/nature12477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Chan K, et al. An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers. Nat Genet. 2015;47:1067. https://doi.org/10.1038/ng.3378.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Burns MB, Temiz NA, Harris RS. Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat Genet. 2013;45:977–83. https://doi.org/10.1038/ng.2701.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Leonard B, et al. APOBEC3B upregulation and genomic mutation patterns in serous ovarian carcinoma. Cancer Res. 2013;73:7222–31. https://doi.org/10.1158/0008-5472.can-13-1753.

    Article  PubMed  CAS  Google Scholar 

  49. Roberts SA, et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet. 2013;45:970–6. https://doi.org/10.1038/ng.2702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Taylor BJ, et al. DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis. eLife. 2013;2:e00534. https://doi.org/10.7554/eLife.00534.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kidd JM, Newman TL, Tuzun E, Kaul R, Eichler EE. Population stratification of a common APOBEC gene deletion polymorphism. PLoS Genet. 2007;3:e63. https://doi.org/10.1371/journal.pgen.0030063.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Long J, et al. A common deletion in the APOBEC3 genes and breast cancer risk. J Natl Cancer Inst. 2013;105:573–9. https://doi.org/10.1093/jnci/djt018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Xuan D, et al. APOBEC3 deletion polymorphism is associated with breast cancer risk among women of European ancestry. Carcinogenesis. 2013;34:2240–3. https://doi.org/10.1093/carcin/bgt185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Nik-Zainal S, et al. Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer. Nat Genet. 2014;46:487–91. https://doi.org/10.1038/ng.2955.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Middlebrooks CD, et al. Association of germline variants in the APOBEC3 region with cancer risk and enrichment with APOBEC-signature mutations in tumors. Nat Genet. 2016;48:1330–8. https://doi.org/10.1038/ng.3670.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Harris RS. Cancer mutation signatures, DNA damage mechanisms, and potential clinical implications. Genome Med. 2013;5:87. https://doi.org/10.1186/gm490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Roberts SA, et al. Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol Cell. 2012;46:424–35. https://doi.org/10.1016/j.molcel.2012.03.030.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hoopes JI, et al. APOBEC3A and APOBEC3B preferentially deaminate the lagging strand template during DNA replication. Cell Rep. 2016;14:1273–82. https://doi.org/10.1016/j.celrep.2016.01.021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Sakofsky CJ, et al. Break-induced replication is a source of mutation clusters underlying kataegis. Cell Rep. 2014;7:1640–8. https://doi.org/10.1016/j.celrep.2014.04.053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Chen J, Miller BF, Furano AV. Repair of naturally occurring mismatches can induce mutations in flanking DNA. eLife. 2014;3:e02001. https://doi.org/10.7554/eLife.02001.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kazanov MD, et al. APOBEC-induced cancer mutations are uniquely enriched in early-replicating, gene-dense, and active chromatin regions. Cell Rep. 2015;13:1103–9. https://doi.org/10.1016/j.celrep.2015.09.077.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Wilson DM 3rd, Bohr VA. The mechanics of base excision repair, and its relationship to aging and disease. DNA Repair. 2007;6:544–59. https://doi.org/10.1016/j.dnarep.2006.10.017.

    Article  PubMed  CAS  Google Scholar 

  63. Ross AL, Sale JE. The catalytic activity of REV1 is employed during immunoglobulin gene diversification in DT40. Mol Immunol. 2006;43:1587–94. https://doi.org/10.1016/j.molimm.2005.09.017.

    Article  PubMed  CAS  Google Scholar 

  64. Jansen JG, et al. Strand-biased defect in C/G transversions in hypermutating immunoglobulin genes in Rev1-deficient mice. J Exp Med. 2006;203:319–23. https://doi.org/10.1084/jem.20052227.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Fanourakis G, et al. Evidence for APOBEC3B mRNA and protein expression in oral squamous cell carcinomas. Exp Mol Pathol. 2016;101:314–9. https://doi.org/10.1016/j.yexmp.2016.11.001.

    Article  PubMed  CAS  Google Scholar 

  66. Zhang L, et al. Genomic analyses reveal mutational signatures and frequently altered genes in esophageal squamous cell carcinoma. Am J Hum Genet. 2015;96:597–611. https://doi.org/10.1016/j.ajhg.2015.02.017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Liu W, et al. Subtyping sub-Saharan esophageal squamous cell carcinoma by comprehensive molecular analysis. JCI Insight. 2016;1:e88755. https://doi.org/10.1172/jci.insight.88755.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gleber-Netto FO, et al. Distinct pattern of TP53 mutations in human immunodeficiency virus-related head and neck squamous cell carcinoma. Cancer. 2017;124:84. https://doi.org/10.1002/cncr.31063.

    Article  PubMed  CAS  Google Scholar 

  69. Burtness B. The tumor genome in human immunodeficiency virus-related head and neck cancer: exploitable targets? Cancer. 2017. https://doi.org/10.1002/cncr.31059.

  70. Kreimer AR, Clifford GM, Boyle P, Franceschi S. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomark Prev. 2005;14:467–75. https://doi.org/10.1158/1055-9965.epi-04-0551.

    Article  CAS  Google Scholar 

  71. Gillison ML, et al. Distinct risk factor profiles for human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck cancers. J Natl Cancer Inst. 2008;100:407–20. https://doi.org/10.1093/jnci/djn025.

    Article  PubMed  Google Scholar 

  72. Vartanian JP, Guetard D, Henry M, Wain-Hobson S. Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions. Science (New York, NY). 2008;320:230–3. https://doi.org/10.1126/science.1153201.

    Article  CAS  Google Scholar 

  73. Wang Z, et al. APOBEC3 deaminases induce hypermutation in human papillomavirus 16 DNA upon beta interferon stimulation. J Virol. 2014;88:1308–17. https://doi.org/10.1128/jvi.03091-13.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ahasan MM, et al. APOBEC3A and 3C decrease human papillomavirus 16 pseudovirion infectivity. Biochem Biophys Res Commun. 2015;457:295–9. https://doi.org/10.1016/j.bbrc.2014.12.103.

    Article  CAS  PubMed  Google Scholar 

  75. Warren CJ, et al. APOBEC3A functions as a restriction factor of human papillomavirus. J Virol. 2015;89:688–702. https://doi.org/10.1128/jvi.02383-14.

    Article  PubMed  Google Scholar 

  76. Henderson S, Chakravarthy A, Su X, Boshoff C, Fenton TR. APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumor development. Cell Rep. 2014;7:1833–41. https://doi.org/10.1016/j.celrep.2014.05.012.

    Article  CAS  PubMed  Google Scholar 

  77. Henderson S, Chakravarthy A, Fenton T. When defense turns into attack: Antiviral cytidine deaminases linked to somatic mutagenesis in HPV-associated cancer. Mol Cell Oncol. 2014;1:e29914. https://doi.org/10.4161/mco.29914.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Vieira VC, et al. Human papillomavirus E6 triggers upregulation of the antiviral and cancer genomic DNA deaminase APOBEC3B. mBio. 2014;5. https://doi.org/10.1128/mBio.02234-14.

  79. Barretina J, et al. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet. 2010;42:715–21. https://doi.org/10.1038/ng.619.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Zhao L, Vogt PK. Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci U S A. 2008;105:2652–7. https://doi.org/10.1073/pnas.0712169105.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Adelstein D, et al. NCCN guidelines insights: head and neck cancers, version 2.2017. J Natl Compr Cancer Netw: JNCCN. 2017;15:761–70. https://doi.org/10.6004/jnccn.2017.0101.

    Article  Google Scholar 

  82. Scott L, Azacitidine J. A review in myelodysplastic syndromes and acute myeloid leukaemia. Drugs. 2016;76:889–900. https://doi.org/10.1007/s40265-016-0585-0.

    Article  PubMed  CAS  Google Scholar 

  83. Biktasova A, et al. Demethylation therapy as a targeted treatment for human papillomavirus-associated head and neck cancer. Clin Cancer Res. 2017;23:7276. https://doi.org/10.1158/1078-0432.ccr-17-1438.

    Article  PubMed  CAS  Google Scholar 

  84. Buisson R, Lawrence MS, Benes CH, Zou L. APOBEC3A and APOBEC3B activities render cancer cells susceptible to ATR inhibition. Cancer Res. 2017;77:4567–78. https://doi.org/10.1158/0008-5472.can-16-3389.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Boichard A, Tsigelny IF, Kurzrock R. High expression of PD-1 ligands is associated with kataegis mutational signature and APOBEC3 alterations. Oncoimmunology. 2017;6:e1284719. https://doi.org/10.1080/2162402x.2017.1284719.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mullane SA, et al. Correlation of apobec mrna expression with overall survival and pd-l1 expression in urothelial carcinoma. Sci Rep. 2016;6:27702. https://doi.org/10.1038/srep27702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 2015;14:847–56. https://doi.org/10.1158/1535-7163.mct-14-0983.

    Article  PubMed  CAS  Google Scholar 

  88. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science (New York, NY). 2015;348:69–74. https://doi.org/10.1126/science.aaa4971.

    Article  CAS  Google Scholar 

  89. Rizvi NA, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science (New York, NY). 2015;348:124–8. https://doi.org/10.1126/science.aaa1348.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen S. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sasaki, T., Issaeva, N., Yarbrough, W.G., Anderson, K.S. (2018). APOBEC as an Endogenous Mutagen in Cancers of the Head and Neck. In: Burtness, B., Golemis, E. (eds) Molecular Determinants of Head and Neck Cancer. Current Cancer Research. Humana Press, Cham. https://doi.org/10.1007/978-3-319-78762-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78762-6_10

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-78761-9

  • Online ISBN: 978-3-319-78762-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics