Advertisement

Analysis of Traffic Accident in Riyadh Using Clustering Algorithms

  • Alaa Almjewail
  • Aljoharah Almjewail
  • Suha Alsenaydi
  • Haifa ALSudairy
  • Isra Al-Turaiki
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 753)

Abstract

Saudi Arabia is considered one of the top ranking countries in terms of car accident rates. Riyadh, the capital of Saudi Arabia, has the highest rate of accidents, reaching 29.20%. This study aims to analyze traffic accident records in Riyadh and attempt to determine the locations with high risk of accidents. In this paper, we apply data mining techniques in order to understand traffic accidents characteristics and help identify black spots. The two clustering techniques that are used are: k-means and DBscan. Results revealed the most occurring locations for accidents.

Keywords

Data mining Road accident Riyadh K-means DBscan Black spot Hot spot 

References

  1. 1.
    WHO | Number of road traffic deaths, WHO. http://www.who.int/gho/road_safety/mortality/traffic_deaths_number/en/. Accessed 12 Dec 2017
  2. 2.
    Traffic accidents occur every minute in KSA, Arab News, 13-Mar-2015. http://www.arabnews.com/saudi-arabia/news/717596. Accessed 11 Dec 2017
  3. 3.
    Ebrahimkhani, S., Begham, B.S., Moradkhani, F.: Road accident data analysis: a data mining approach. Indian J. Sci. Res. 3(3), 437–443 (2014)Google Scholar
  4. 4.
    Kaur, G., Kaur, H.: Black spot and accidental attributes identification on state highways and ordinary district roads using data mining techniques. Int. J. 8, 5 (2017)Google Scholar
  5. 5.
    Thapa, S., Lee, J.: Data Mining Techniques on Traffic Violations. University of Bridgeport, CT (2016)Google Scholar
  6. 6.
    Kumar, S., Toshniwal, D.: A data mining approach to characterize road accident locations. J. Mod. Transp. 24(1), 62–72 (2016)CrossRefGoogle Scholar
  7. 7.
    Shafabakhsh, G.A., Famili, A., Bahadori, M.S.: GIS-based spatial analysis of urban traffic accidents: case study in Mashhad. Iran. J. Traffic Transp. Eng. 4(3), 290–299 (2017)Google Scholar
  8. 8.
    Yalcin, G., Duzgun, H.S.: Spatial analysis of two-wheeled vehicles traffic crashes: Osmaniye in Turkey. KSCE J. Civ. Eng. 19(7), 2225–2232 (2015)CrossRefGoogle Scholar
  9. 9.
    Dereli, M.A., Erdogan, S.: A new model for determining the traffic accident black spots. Transp. Res. Part A 103, 106–117 (2017)Google Scholar
  10. 10.
    Hussien, H.H., Eissa, F.H.: Identifying hazardous road locations in Saudi Arabia. J. Eng. Technol. Innovation 5(4), 045–056 (2016)Google Scholar
  11. 11.
    Martin, L., Baena, L., Garach, L., Lopez, G., de Ona, J.: Using data mining techniques to road safety improvement in Spanish roads. Procedia Soc. Behav. Sci. 160, 607–614 (2014)CrossRefGoogle Scholar
  12. 12.
    Addi, A.M., Tarik, A., Fatima, G.: An approach based on association rules mining to improve road safety in Morocco. In: 2016 International Conference on Information Technology for Organizations Development (IT4OD), pp. 1–6 (2016)Google Scholar
  13. 13.
    Montella, A.: A comparative analysis of hotspot identification methods. Accid. Anal. Prev. 42(2), 571–581 (2010)CrossRefGoogle Scholar
  14. 14.
    Szenasi, S., Csiba, P.: Clustering Algorithm in Order to Find Accident Black SpotsIdentified By GPS Coordinates. In: SGEM 2014. Bulgaria, pp. 497–503, 17-26 June 2014Google Scholar
  15. 15.
    Ye, J., Zhou, Y., Li, M., Wang, C.: Research and implement of traffic accident analysis system based on accident black spot. In: 2010 5th International Conference on Computer Science Education, pp. 1805–1809 (2010)Google Scholar
  16. 16.
    Chen, Y., Wu, H., Liu, C., Sun, W.: Identification of black spot on traffic accidents and its spatial association analysis based on geographic information system. In: 2011 Seventh International Conference on Natural Computation, vol. 1, pp. 143–150 (2011)Google Scholar
  17. 17.
    Hosseinlou, M.H., Sohrabi, M.: Predicting and identifying traffic hot spots applying neuro-fuzzy systems in intercity roads. Int. J. Env. Sci. Technol. 6, 309–314 (2009)CrossRefGoogle Scholar
  18. 18.
    Kutools - Combines More Than 200 Advanced Functions and Tools for Microsoft Excel. https://www.extendoffice.com/product/kutools-for-excel.html. Accessed 15 Dec 2017
  19. 19.
    Orange -Data Mining Fruitful and Fun. https://orange.biolab.si/. Accessed 15 Dec 2017
  20. 20.
    ArcMap | ArcGIS Desktop. http://desktop.arcgis.com/en/arcmap/. Accessed 15 Dec 2017
  21. 21.
    AutoCAD Civil 3D | Civil Engineering Software | Autodesk. https://www.autodesk.com/products/autocad-civil-3d/overview. Accessed 15 Dec 2017
  22. 22.
    Russel, S.J., Norvig, P.: Artificial Intelligence a Modern Approach (2010)Google Scholar
  23. 23.
    Kim, K., Yamashita, E.Y.: Using a k-means clustering algorithm to examine patterns of pedestrian involved crashes in Honolulu, Hawaii. J. Adv. Transp. 41(1), 69–89 (2007)CrossRefGoogle Scholar
  24. 24.
    Kanagala, H.K., Krishnaiah, V.V.J.R.: A comparative study of K-Means, DBSCAN and OPTICS. In: International Conference on Computer Communication and Informatics (ICCCI), pp. 1–6 (2016)Google Scholar
  25. 25.
    Schubert, E., Sander, J., Ester, M., Kriegel, H.P., Xu, X.: DBSCAN Revisited. ACM Trans. Database Syst. 42(3), 1–21 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Macqueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of Fifth Berkeley Symposium Mathematical Statistics and Probability, vol. 1(233), pp. 281–297 (1967)Google Scholar
  27. 27.
    Trevino, A.: Introduction to K-means clustering 2016. https://www.datascience.com/blog/k-means-clustering. Accessed 25 Nov 2017
  28. 28.
    Weka 3 - Data Mining with Open Source Machine Learning Software in Java. https://www.cs.waikato.ac.nz/ml/weka/downloading.html. Accessed 15 Dec 2017
  29. 29.
    Data Science Platform RapidMiner. https://rapidminer.com/. Accessed 15 Dec 2017
  30. 30.
    Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, Oregon, pp. 226–231 (1996)Google Scholar
  31. 31.
    Mac Queen, J.E.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)Google Scholar
  32. 32.
    Elvik, R.: State-of-the-Art Approaches to Road Accident Black Spot Management and Safety Analysis of Road Networks. Report 883. Institute of Transport Economics, Oslo (2007)Google Scholar
  33. 33.
    Geurts, K., Wets, G., Brijs, T.: Profiling High Frequency Accident Locations Using Associations Rules. Steunpunt Verkeersveiligheid (2002)Google Scholar
  34. 34.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. The Morgan Kaufmann Series in Data Management Systems, 3rd edn. Morgan Kaufmann, Boston (2011). ISBN 978-0-12-381479-1zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alaa Almjewail
    • 1
  • Aljoharah Almjewail
    • 1
  • Suha Alsenaydi
    • 1
  • Haifa ALSudairy
    • 1
  • Isra Al-Turaiki
    • 1
  1. 1.College of Computer and Information ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations