Skip to main content

Introduction

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

Abstract

A discussion of the flow situations considered in this book is provided. A relatively brief overview of past studies concerned with the types of flow being considered is given. The numerical solution procedure adopted in obtaining the results discussed in the book is then outlined. A discussion of the use of a characteristic length is then given. It is explained that if this characteristic length is used in defining the Nusselt and Rayleigh numbers, then the same relationship between the Nusselt number and the Rayleigh number will be obtained for all the surface shapes in a given type of flow situation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Corcione M (2008) Natural convection heat transfer above heated horizontal surfaces. In: Proceedings of 5th WSEAS international conference on heat and mass transfer (HMT 2008) Acapulco, pp 25–27

    Google Scholar 

  2. Corcione M (2007) Heat transfer correlations for free convection from upward-facing horizontal rectangular surfaces. In: Proceedings of WSEAS transactions on heat and mass transfer, vol 2, Issue 3, pp 48–60

    Google Scholar 

  3. Abdulateef J, Hassan A (2015) Correlations for Nusselt number in free convection from an isothermal inclined square plate by numerical simulation. Am J Mech Appl 3(2):8–18

    Google Scholar 

  4. Burmeister LC (1993) Convective heat transfer, 2nd edn. Wiley, New York, pp 636–637

    Google Scholar 

  5. Ishiguro R, Nagase H, Nakanishi S, Abe T (1978) Heat transfer and flow instability of natural convection over upward-facing horizontal surfaces. In: Proceedings of the sixth international heat transfer conference, vol 2. Toronto, pp 229–234

    Google Scholar 

  6. Singh SN, Birkebak RC (1969) Laminar free convection from a horizontal infinite strip facing downwards. J Appl Math Phys (ZAMP) 20(4):454–461. https://doi.org/10.1007/BF01595038

    Article  Google Scholar 

  7. Sucec J (1985) Heat Transfer. Wm. C. Brown Publisher, Dubuque, pp 636–637

    Google Scholar 

  8. Lewandowski WM, Kubski P (1983) Methodical investigation of free convection from vertical and horizontal plates. Wärme-und Stoffübertrag 17(3):147–154

    Article  Google Scholar 

  9. Khalifa AJN (2001) Natural convective heat transfer coefficient–a review I. Isolated vertical and horizontal surfaces. Energy Convers Manag 42:491–504

    Article  Google Scholar 

  10. Radziemska E, Lewandowski WM (2005) The effect of plate size on the natural convective heat transfer intensity of horizontal surfaces. Heat Transf Eng 26(2):50–53

    Article  Google Scholar 

  11. Fishenden M, Saunders OA (1950) An Introduction to Heat Transfer. Oxford University Press, London

    Google Scholar 

  12. Bosworth RLC (1952) Heat Transfer Phenomena. Wiley, New York

    MATH  Google Scholar 

  13. Hassan K-E, Mohamed SA (1970) Natural convection from isothermal flat surfaces. Int J Heat Mass Transf 13(12):1873–1886

    Article  Google Scholar 

  14. Husar RB, Sparrow EM (1968) Patterns of free convection flow adjacent to horizontal heated surfaces. Int J Heat Mass Transfer 11:1206–1208

    Article  Google Scholar 

  15. Lewandowski WM, Kubski P, Khubeiz JM (1992) Natural convection heat transfer from round horizontal plate. Wärme-und Stoffübertrag 27(5):281–287

    Article  Google Scholar 

  16. Rotem Z, Claassen L (1969) Natural convection above unconfined horizontal surfaces. J Fluid Mech 38(1):173–192

    Article  Google Scholar 

  17. Pera L, Gebhart B (1972) Natural convection flows adjacent to horizontal surfaces resulting from the combined buoyancy effects of thermal and mass diffusion. Int J Heat Mass Transf 15(2):269–278

    Article  Google Scholar 

  18. Pera L, Gebhart B (1973) Natural convection boundary layer flow over horizontal and slightly inclined surfaces. Int J Heat Mass Transfer 16(6):1131–1146. https://doi.org/10.1016/0017-9310(73)90126-9

    Article  MATH  Google Scholar 

  19. Fujii T, Imura H (1972) Natural-convection heat transfer from a plate with arbitrary inclination. Int J Heat Mass Transf 15(4):755–767. https://doi.org/10.1016/0017-9310(72)90118-4

    Article  Google Scholar 

  20. Tetsu F, Hiroshi H, Itsuki M (1973) A theoretical study of natural convection heat transfer from downward-facing horizontal surfaces with uniform heat flux. Int J Heat Mass Transfer 16:611–627

    Article  Google Scholar 

  21. Lewandowski WM, Radziemska E, Buzuk M, Bieszk H (2000) Free convection heat transfer and fluid flow above horizontal rectangular plates. Appl Energy 66(2):177–197

    Article  Google Scholar 

  22. Pretot S, Zeghmati B, Le Palec G (2000) Theoretical and experimental study of natural convection on a horizontal plate. Appl Therm Eng 20(10):873–891

    Article  Google Scholar 

  23. Martorell I, Herrero J, Grau FX (2003) Natural convection from narrow horizontal plates at moderate Rayleigh numbers. Int J Heat Mass Transf 46(13):2389–2402

    Article  Google Scholar 

  24. Kozanoglu B, Lopez J (2007) Thermal boundary layer and the characteristic length on natural convection over a horizontal plate. J Heat Mass Transf 43(4):333–339

    Article  Google Scholar 

  25. Lloyd JR, Moran WR (1974) Natural convection adjacent to horizontal surface of various planforms. J Heat Transf 96(4):443–447

    Article  Google Scholar 

  26. Al-Arabi M, El-Riedy MK (1976) Natural convection heat transfer from isothermal horizontal plates of different shapes. Int J Heat Mass Transf 19(12):1399–1404

    Article  Google Scholar 

  27. Kitamura K, Kimura F (1995) Heat transfer and fluid flow of natural convection adjacent to upward-facing horizontal plates. Int J Heat Mass Transf 38(17):3149–3159

    Article  Google Scholar 

  28. Kitamura K, Kimura F (2008) Fluid flow and heat transfer of natural convection over upward-facing, horizontal heated circular disks. Heat Transf-Asian Res 37(6):339–351

    Article  Google Scholar 

  29. Wragg AA, Loomba RP (1970) Free convection flow patterns at horizontal surfaces with ionic mass transfer. Int J Heat Mass Transf 13:439–442

    Article  Google Scholar 

  30. Yousef WW, Tarasuk JP, McKeen WJ (1982) Free convection heat transfer from upward-facing isothermal horizontal surfaces. J Heat Transf 104(3):493–500. https://doi.org/10.1115/1.3245120

    Article  Google Scholar 

  31. Stewartson K (1958) On free convection from a horizontal plate. Z.A.M.P. 9(3):276–282. https://doi.org/10.1007/BF02033031

  32. Gill WN, Zeh DW, del Casal E (1965) Free convection on a horizontal plate. Z.A.M.P. 16:539–541. https://doi.org/10.1007/BF01593934

    Article  Google Scholar 

  33. Ackroyd JAD (1976) Laminar natural convection boundary layers on near-horizontal plates. Proc R Soc London 352(1669):249–274

    Article  Google Scholar 

  34. Bandrowski J, Rybski W (1976) Free convection mass transfer from horizontal plates. Int J Heat Mass Transf 19:827–838

    Article  Google Scholar 

  35. Lewandowski WM (1991) Natural convection heat transfer from plates of finite dimensions. Int J Heat Mass Transf 34(3):875–885. https://doi.org/10.1016/0017-9310(91)90133-Y

    Article  Google Scholar 

  36. Suriano FJ, Yang KT (1968) Laminar free convection about vertical and horizontal plates at small and moderate Grashof numbers. Int J Heat Mass Transf 11(3):473–490. https://doi.org/10.1016/0017-9310(68)90091-4

    Article  MATH  Google Scholar 

  37. Goldstein RJ, Lau KS (1983) Laminar natural convection from a horizontal plate and the influence of plate-edge extensions. J Fluid Mech 129:55–75

    Article  Google Scholar 

  38. Wei JJ, Yu B, Kawaguchi Y (2003) Simultaneous natural-convection heat transfer above and below an isothermal horizontal thin plate. Numer Heat Transf Part A (Appl) 44(1):39–58

    Article  Google Scholar 

  39. Oosthuizen PH (2014) Natural convective heat transfer from an inclined isothermal square flat element mounted in a flat adiabatic surrounding surface. In: Proceedings of the 15th international heat transfer conference, Paper IHTC15-8499

    Google Scholar 

  40. Oosthuizen PH (2015) Laminar, transitional and turbulent natural convective heat transfer from a horizontal rectangular isothermal element imbedded in a flat adiabatic surrounding surface. In: Proceedings of the ICHMT international symposium on advances in computational heat transfer (CHT-15) Rutgers University, Piscataway, USA. May 25–29. Paper CHT-15-145

    Google Scholar 

  41. Oosthuizen PH, Kalendar A (2015) A numerical study of natural convective heat transfer from a pair of adjacent horizontal isothermal square elements embedded in an adiabatic surface–effect of element spacing on heat transfer rate. In: Proceeding of 11th international conference on heat transfer, fluid mechanics and thermodynamics (HEFAT 2015) Paper 1570075659

    Google Scholar 

  42. Oosthuizen PH, Kalendar A (2015) Laminar and turbulent natural convective heat transfer from a horizontal isothermal circular element with an unheated inner circular section. In: Proceedings of the CFD society of Canada 23rd annual conference, June 7–10, Waterloo

    Google Scholar 

  43. Oosthuizen, PH (2016) A numerical study of the effect of a plane horizontal covering surface on natural convective heat transfer from a circular horizontal isothermal element that has an inner adiabatic circular section. In: Proceedings of the 24th annual conference of the CFD society of Canada, Kelowna, BC, June 26–29

    Google Scholar 

  44. Oosthuizen PH (2015) A numerical study of natural convective heat transfer from horizontal isothermal heated elements of complex shape. In: Proceedings of the 1st thermal & fluids engg summer conference (ASTFE), Paper TFESC-12863, August 9–12, New York City

    Google Scholar 

  45. Oosthuizen PH (2016) Numerical study of natural convective heat transfer from horizontal heated elements of relatively complex shape that have a uniform surface heat flux. In: Proceedings of the 12th international conference on heat transfer, fluid mechanics and thermodynamics (HEFAT 2016), Malaga, Spain, July 11–13

    Google Scholar 

  46. Hossain MA, Takhar HS (1999) Thermal radiation effects on the natural convection flow over an isothermal horizontal plate. J Heat Mass Transf 35(4):321–326

    Article  Google Scholar 

  47. Noshadi V, Schneider W (1999) Natural convection flow far from a horizontal plate. J Fluid Mech 387:227–254. https://doi.org/10.1017/S0022112099004462

    Article  MathSciNet  MATH  Google Scholar 

  48. Sparrow EM, Carlson CK (1986) Local and average natural convection Nusselt numbers for a uniformly heated, shrouded or unshrouded horizontal plate. Int J Heat Mass Transf 29(3):369–379. https://doi.org/10.1016/0017-9310(86)90207-3

    Article  Google Scholar 

  49. Kitamura K, Asakawa T (2000) Fluid flow and heat transfer of natural convection over upward-facing, horizontal, heated plate shrouded by a parallel insulated plate. Heat Transf-Asian Res 29(4):333–346

    Article  Google Scholar 

  50. Oosthuizen PH (2014) Natural convective heat transfer from a horizontal rectangular isothermal element imbedded in a plane adiabatic surface with a parallel adiabatic covering surface. In: Proceedings of the ASME 2014 international mechanical engineering congress and exposition, Paper IMECE2014-36780

    Google Scholar 

  51. Oosthuizen PH (2014) Natural convective heat transfer from a horizontal isothermal circular element imbedded in a flat adiabatic surface with a parallel adiabatic covering surface. In: Proceedings of the AIAA/ASME joint thermophysics and heat transfer conference. Paper AIAA-2014-3357

    Google Scholar 

  52. Oosthuizen PH (2014) A numerical study of natural convective heat transfer from a horizontal isothermal square element imbedded in an adiabatic surface with a parallel adiabatic covering surface. In: Proceedings of the 10th international conference on heat transfer, fluid mechanics and thermodynamics (HEFAT 2014) Paper 1569876763

    Google Scholar 

  53. Oosthuizen PH, Paul JT (2013) Numerical study of the effect of vent positioning on the natural convective heat transfer rate from a horizontal isothermal heated surface mounted in a flat adiabatic base and surrounded by a protective surface. In: Proceedings of the 13th UK heat transfer conference (UKHTC2013) London, Sept. 2–3. ISBN 978-0-9572298-5-3. Paper UKHTC2013/66

    Google Scholar 

  54. Oosthuizen PH (2015) Numerical study of the effect of vent size on natural convective heat transfer from a square horizontal isothermal heated surface surrounded by a protective cover. In: Proceedings of the 1st thermal & fluids engineering summer conference (ASTFE) Paper TFESC-12865, Aug 9–12, New York

    Google Scholar 

  55. Oosthuizen PH (2014) A numerical study of the effect of a chimney induced flow on natural convective heat transfer from a heated horizontal isothermal circular element. In: Proceedings of the 22nd annual conference of the CFD society of Canada, Toronto, June 1–4

    Google Scholar 

  56. Rahmatmand A, Oosthuizen PH (2016) Numerical study of chimney-enhanced natural convective heat transfer from a horizontal plate. In: Proceedings of the 24th annual conference of the CFD society of Canada, Kelowna, BC, June 26–29

    Google Scholar 

  57. Lewandowski WM, Bieszk H, Cieśliński J (1992) Free convection from horizontal screened plates. Wärme-und Stoffübertrag 27(8):481–488. https://doi.org/10.1007/BF01590049

    Article  Google Scholar 

  58. Rich BR (1953) An investigation of heat transfer from an inclined flat plate in free convection. Trans ASME 75:489–499

    Google Scholar 

  59. Vliet GC (1970) Natural convection local heat transfer on constant heat flux inclined surfaces. J Heat Transf 91:511–516

    Article  Google Scholar 

  60. Lloyd JR, Sparrow EM, Eckert ERG (1972) Laminar, transition and turbulent natural convection adjacent to inclined and vertical surfaces. Int J Heat Mass Transf 15(3):457–473. https://doi.org/10.1016/0017-9310(72)90210-4

    Article  Google Scholar 

  61. Chen TS, Tien HC, Armaly BF (1986) Natural convection on horizontal, inclined, and vertical plates with variable surface temperature or heat flux. Int J Heat Mass Transf 29(10):1465–1478. https://doi.org/10.1016/0017-9310(86)90061-X

    Article  MATH  Google Scholar 

  62. Al-Arabi M, Sakr B (1988) Natural convection heat transfer from inclined isothermal plates. Int J Heat Mass Transf 31(3):559–566

    Article  Google Scholar 

  63. Radziemska E, Lewandowski WM (2007) Experimental investigation of natural convection from circular plates at variable inclination. J Thermophys Heat Transf 21(4):813–816

    Article  Google Scholar 

  64. Black WZ, Norris JK (1974) Interferometric measurement of fully turbulent free convective heat transfer coefficients. Rev Sci Instrum 45:216–218. https://doi.org/10.1063/1.1686591

    Article  Google Scholar 

  65. Kobus CJ, Wedekind GL (2002) An empirical correlation for natural convection heat transfer from thin isothermal circular disks at arbitrary angles of inclination. Int J Heat Mass Transf 45(5):1159–1163. https://doi.org/10.1016/S0017-9310(01)00213-7

    Article  Google Scholar 

  66. Kobus CJ (2007) Investigation of natural convection heat transfer from uniformly heated (isoflux), thin, stationary circular disks at arbitrary angles of inclination. Exp Thermal Fluid Sci 31(3):191–195

    Article  Google Scholar 

  67. Wei JJ, Yu B, Wang HS, Tao WQ (2002) Numerical study of simultaneous natural convection heat transfer from both surfaces of a uniformly heated thin plate with arbitrary inclination. J Heat Mass Transf 38(4–5):309–317

    Article  Google Scholar 

  68. Corcione M, Habib E, Campo A (2011) Natural convection from inclined plates to gases and liquids when both sides are uniformly heated at the same temperature. Int J Therm Sci 50:1405–1416

    Article  Google Scholar 

  69. Sparrow EM, Husar HB (1969) Longitudinal vortices in natural convection flow on inclined plates. J Fluid Mech 37:251–255

    Article  Google Scholar 

  70. Lloyd JR, Sparrow EM (1970) On the instability of natural convection flow on inclined plates. J Fluid Mech 42:465–470

    Article  Google Scholar 

  71. Pera L, Gebhart B (1973) On the stability of natural convection boundary-layer flow over horizontal and slightly inclined surfaces. Int J Heat Mass Transf 16(6):1147–1158. https://doi.org/10.1016/0017-9310(73)90127-0

    Article  MATH  Google Scholar 

  72. Black WZ, Norris JK (1975) The thermal structure of free convection turbulence from inclined isothermal surfaces and its influence on heat transfer. Int J Heat Mass Transf 18:43–50

    Article  Google Scholar 

  73. Tien H-C, Chen TS, Armaly BF (1986) Vortex instability of natural convection flow over horizontal and inclined plates with uniform surface heat flux. Numer Heat Transf 9(6):697–713

    Article  Google Scholar 

  74. Cheng KC, Kim YW (1988) Flow visualization studies on vortex instability of natural convection flow over horizontal and slightly inclined constant-temperature plates. J Heat Transf 110:608–615

    Article  Google Scholar 

  75. Chen CC, Labahabi A, Chang H-C, Kelly RE (1991) Spanwise pairing of finite-amplitude longitudinal vortex rolls in inclined free-convection boundary layer. J Fluid Mech 23:73–111

    Article  MathSciNet  Google Scholar 

  76. Jeschke P, Beer H (2001) Longitudinal vortices in a laminar natural convection boundary layer flow on an inclined flat plate and their influence on heat transfer. J Fluid Mech 432:313–339

    MATH  Google Scholar 

  77. Biertümpfel R, Beer H (2003) Natural convection heat transfer increase at the laminar-turbulent transition in the presence of in stationary longitudinal vortices. Int J Heat Mass Transf 46(16):3109–3117. https://doi.org/10.1016/S0017-9310(03),00079-6

    Article  Google Scholar 

  78. Oosthuizen PH (2016) A numerical study of natural convective heat transfer from upward facing recessed and protruding heated horizontal isothermal circular surfaces. In: Proceedings of the 12th international conference on heat transfer, fluid mechanics and thermodynamics (HEFAT 2016)

    Google Scholar 

  79. Oosthuizen PH (2017) Natural convective heat transfer from a heated upward facing recessed isothermal horizontal two-dimensional element with and without heated side walls. In: Proceedings of the 25th annual conference of the CFD society of Canada

    Google Scholar 

  80. Oosthuizen PH, Kalendar AY (2017) Natural convective heat transfer from upward facing recessed and protruding heated horizontal isothermal circular elements with isothermal vertical side surfaces. In: Proceedings of the 13th international conference on heat transfer, fluid mechanics and thermodynamics (HEFAT 2017)

    Google Scholar 

  81. Goldstein RJ, Sparrow EM, Jones DC (1973) Natural convection mass transfer adjacent to horizontal plates. Int J Heat Mass Transf 16(5):1025–1035

    Article  Google Scholar 

  82. Chambers BB, Lee TT (1997) A numerical study of local and average natural convection Nusselt numbers for simultaneous convection above and below a uniformly heated horizontal thin plate. J Heat Transf 119(1):102–108

    Article  Google Scholar 

  83. Dooher BP, Mills AF (2000) Natural-convection thermosyphon heat transfer from a stack of horizontal plates. Exp Heat Transf 13(2):125–136

    Article  Google Scholar 

  84. Zakerullah M, Ackroyd JAD (1979) Laminar natural convection boundary layers on horizontal circular discs. J Appl Math Phys (ZAMP) 30(3):427–435. https://doi.org/10.1007/BF01588887

    Article  MATH  Google Scholar 

  85. Kobus CJ, Wedekind GL (2001) An experimental investigation into natural convection heat transfer from horizontal isothermal circular disks. Int J Heat Mass Transf 44(17):3381–3384

    Article  Google Scholar 

  86. Fontana L (2014) Free convection heat transfer from an isothermal horizontal thin strip: the influence of the Prandtl number. J Therm Sci 23(6):586–592

    Article  Google Scholar 

  87. Oosthuizen PH, Kalendar AY (2016) A numerical study of the simultaneous natural convective heat transfer from the upper and lower surfaces of a thin isothermal horizontal circular plate. In: Proceedings of the 2016 ASME international mechanical engineering congress and exposition (IMECE2016)

    Google Scholar 

  88. Oosthuizen PH (2017) Natural convective heat transfer from two thin vertically spaced axially aligned horizontal isothermal circular plates. In: Proceedings of the 2nd thermal and fluids engineering conference (TFEC2017) Paper TFEC-IWHT2017-17451, 2017

    Google Scholar 

  89. Fu W-S, Wang W-H, Huang S-H (2012) An investigation of natural convection of three dimensional horizontal parallel plates from a steady to an unsteady situation by a CUDA computation platform. Int J Heat Mass Transf 55:4638–465050

    Article  Google Scholar 

  90. Fu W-S, Wang W-H, Li C-G (2014) An investigation of natural convection in parallel square plates with a heated top surface by a hybrid boundary condition. Int J Therm Sci 84:48–61

    Article  Google Scholar 

  91. Faw RE, Dullforce TA (1981) Holographic interferometry measurement of convective heat transport beneath a heated horizontal plate in air. Int J Heat Mass Transf 24(5):859–869

    Article  Google Scholar 

  92. Faw RE, Dullforce TA (1982) Holographic interferometry measurement of convective heat transport beneath a heated horizontal circular plate in air. Int J Heat Mass Transf 25(8):1157–1166

    Article  Google Scholar 

  93. Aihara T, Yamada Y, Endö S (1972) Free convection along the downward-facing surface of a heated horizontal plate. Int J Heat Mass Transf 15(12):2535–2538

    Article  Google Scholar 

  94. Sing SN, Birkebak RC, Drake RM (1969) Laminar free convection heat transfer from downward-facing horizontal surfaces of finite dimension. Prog Heat Mass Transf 2:87–98

    Google Scholar 

  95. Gryzagoridis J (1984) Natural convection from an isothermal downward facing horizontal plate. Int Commun Heat Mass Transf 11(2):183–190. https://doi.org/10.1016/0735-1933(84),90021-6

    Article  Google Scholar 

  96. Clifton JV, Chapman AJ (1969) Natural convection on a finite-size horizontal plate. Int J Heat Mass Transf 12(12):1573–1584

    Article  Google Scholar 

  97. Schulenberg T (1984) Natural convection heat transfer to liquid metals below downward facing horizontal surfaces. Int J Heat Mass Transf 27(3):433–441

    Article  Google Scholar 

  98. Schulenberg T (1985) Natural convection heat transfer below downward facing horizontal surfaces. Int J Heat Mass Transf 28(2):467–477

    Article  Google Scholar 

  99. Friedrich MK, Angirasa D (2001) The interaction between stable thermal stratification and convection under a heated horizontal surface facing downwards. Int J Non-Linear Mech 36(5):719–729

    Article  Google Scholar 

  100. Radziemska E, Lewandowski WM (2001) Heat transfer by natural convection from an isothermal downward-facing round plate in unlimited space. Appl Energy 68(4):347–366

    Article  Google Scholar 

  101. Oosthuizen PH (2015) A numerical study of natural convective heat transfer from a horizontal isothermal square element with an unheated adiabatic inner section. In: Proceedings of the 11th international conference on heat transfer, fluid mechanics and thermodynamics (HEFAT 2015) Paper 570075655

    Google Scholar 

  102. Hatfield DW, Edwards DK (1981) Edge and aspect ratio effects on natural convection from the horizontal heated plate facing downwards. Int J Heat Mass Transf 24(6):1019–1024

    Article  Google Scholar 

  103. Kozanoglu B, Rubio F (2014) The characteristic length on natural convection from a horizontal heated plate facing downwards. Therm Sci 18(2):555–562

    Article  Google Scholar 

  104. Restrepo F, Glicksman LR (1974) The effect of edge conditions on natural convection from a horizontal plate. Int J Heat Mass Transf 17(1):135–142

    Article  Google Scholar 

  105. Savill AM (1993) Evaluating turbulence model predictions of transition. An ERCOFTAC special interest group project. Appl Sci Res 51:555–562

    Article  Google Scholar 

  106. Schmidt RC, Patankar SV (1991) Simulating boundary layer transition with low-Reynolds-number k-ε turbulence models: Part 1-An evaluation of prediction characteristics. J Turbomach 113:10–17

    Article  Google Scholar 

  107. Plumb OA, Kennedy LA (1977) Application of a k-e turbulence model to natural convection from a vertical isothermal surface. J Heat Transf 99:79–85

    Article  Google Scholar 

  108. Zheng X, Liu C, Liu F, Yang C-I (1968) Turbulent transition simulation using the k-ω model. Int J Numer Meth Eng 42(5):907-926. https://doi.org/10.1002/(sici)1097-0207(19980715)42:5<907::aid-nme393>3.0.co;2-t

    Article  Google Scholar 

  109. Albets-Chico X, Oliva A, Perez-Segarra CD (2008) Numerical experiments in turbulent natural convection using two-equation eddy-viscosity models. J Heat Transf 130(7):072501-1–072401-11

    Article  Google Scholar 

  110. Oosthuizen PH, Naylor D (2009) A numerical study of laminar-to-turbulent transition in the flow over a simple recessed window-plane blind system. In: Proceedings of the 4th Canadian solar buildings conference, The Solar Buildings Research Network

    Google Scholar 

  111. Xamán J, Álvarez G, Lira L, Estrada C (2005) Numerical study of heat transfer by laminar and turbulent natural convection in tall cavities of façade elements. Energy Build 37:787–794

    Article  Google Scholar 

  112. Kalendar A, Kalendar AY, Alhendal Y (2016) Evaluation of turbulence models for natural and forced convection from flat plates. Comput Therm Sci Int J 8(6):567–582

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick H. Oosthuizen .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oosthuizen, P.H., Kalendar, A.Y. (2018). Introduction. In: Natural Convective Heat Transfer from Horizontal and Near Horizontal Surfaces. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-78750-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78750-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78749-7

  • Online ISBN: 978-3-319-78750-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics