Advertisement

Design, Architecture, and Engineering with Grammatical Evolution

  • Michael Fenton
  • Jonathan Byrne
  • Erik Hemberg
Chapter

Abstract

Since its inception, Grammatical Evolution has had a rich history with design applications. The use of a formal grammar provides a convenient platform with which users can specify rules for design. Two main aspects of design evolution are the grammatical representation and the objective fitness evaluation.

The field of design representation has many strands, each with its own strengths and weaknesses for particular applications. An overview is given of four popular grammatical representations for design: Lindenmayer Systems, Shape Grammars, Higher Order Functions, and Graph Grammars, with examples of each.

The field of design is dominated by two often conflicting objectives: form and function. The disparity between the two is discussed: Interactive Evolutionary Design is examined in its capacity to provide a truly subjective fitness function for aesthetic form, while engineering applications of GE provide a basis for objective mathematically-based fitness evaluations. Finally, these two techniques can be combined to allow the designer to decide exactly how balance the optimisation and exploration of the process.

Notes

Acknowledgements

This research is based upon works supported by Science Foundation Ireland under grant 13/IA/1850.

References

  1. 1.
    D. Beaumont, S. Stepney, Grammatical evolution of L-systems, in IEEE Congress on Evolutionary Computation, 2009. CEC’09 (IEEE, New York, 2009), pp. 2446–2453Google Scholar
  2. 2.
    British Standards Institution, BS 449-2: 1969. The structural use of steel in building (1969)Google Scholar
  3. 3.
    British Standards Institution, BS 5950-1: 2000. Structural use of steelwork in building (2000)Google Scholar
  4. 4.
    J. Byrne, M. Fenton, E. Hemberg, J. McDermott, M. O’Neill, E. Shotton, C. Nally, Combining structural analysis and multi-objective criteria for evolutionary architectural design, in European Conference on the Applications of Evolutionary Computation (Springer, Berlin, 2011), pp. 204–213Google Scholar
  5. 5.
    J. Byrne, E. Hemberg, A. Brabazon, M. O’Neill, A local search interface for interactive evolutionary architectural design, in International Conference on Evolutionary and Biologically Inspired Music and Art (Springer, Berlin, 2012), pp. 23–34Google Scholar
  6. 6.
    J. Byrne, E. Hemberg, M. O’Neill, A. Brabazon, A methodology for user directed search in evolutionary design. Genet. Program Evolvable Mach. 14(3), 287–314 (2013)CrossRefGoogle Scholar
  7. 7.
    J. Byrne, P. Cardiff, A. Brabazon, M. O’Neill, Evolving parametric aircraft models for design exploration and optimisation. Neurocomputing 142, 39–47 (2014)CrossRefGoogle Scholar
  8. 8.
    J. Byrne, P. Cardiff, A. Brabazon, M. O’Neill, Evolving an aircraft using a parametric design system, in International Conference on Evolutionary and Biologically Inspired Music and Art (Springer, Berlin, 2014), pp. 119–130Google Scholar
  9. 9.
    J. Byrne, M. Fenton, E. Hemberg, J. McDermott, M. O’Neill, Optimising complex pylon structures with grammatical evolution. Inf. Sci. 316, 582–597 (2015)CrossRefGoogle Scholar
  10. 10.
    K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  11. 11.
    B. Delaunay, Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk 7(793–800), 1–2 (1934)Google Scholar
  12. 12.
    H. Ehrig, Introduction to the algebraic theory of graph grammars (a survey), in International Workshop on Graph Grammars and Their Application to Computer Science (Springer, Berlin, 1978), pp. 1–69Google Scholar
  13. 13.
    M. Fenton, Analysis of timber structures created using a GE-based architectural design tool. Master’s thesis, University College Dublin, Ireland, 2010Google Scholar
  14. 14.
    M. Fenton, C. McNally, J. Byrne, E. Hemberg, J. McDermott, M. O’Neill, Automatic innovative truss design using grammatical evolution. Autom. Constr. 39, 59–69 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Fenton, C. McNally, J. Byrne, E. Hemberg, J. McDermott, M. O’Neill, Discrete planar truss optimization by node position variation using grammatical evolution. IEEE Trans. Evol. Comput. 20(4), 577–589 (2016)CrossRefGoogle Scholar
  16. 16.
    S.B. Foundation, Blender 3D, 2009, http://www.blender.org/
  17. 17.
    J.S. Gero, Creativity, emergence and evolution in design. Knowl.-Based Syst. 9(7), 435–448 (1996)CrossRefGoogle Scholar
  18. 18.
    J.R. Gloudemans, P.C. Davis, P.A. Gelhausen, A rapid geometry modeller for conceptual aircraft, in 34th Aerospace Sciences Meeting and Exhibit, Reno, NV (1996), pp. 15–18Google Scholar
  19. 19.
    E. Hemberg, J. McDermott, PonyGE, 2011, https://github.com/jmmcd/ponyge
  20. 20.
    M. Hemberg, U.-M. O’Reilly, GENR8 - using grammatical evolution in a surface design tool, in GECCO (2002), pp. 120–123Google Scholar
  21. 21.
    M. Hemberg, U.-M. O’Reilly, Extending grammatical evolution to evolve digital surfaces with GENR8, in European Conference on Genetic Programming (Springer, Berlin, 2004), pp. 299–308Google Scholar
  22. 22.
    M. Hemberg, U.-M. O’Reilly, Geometry as a substitute for structural analysis in generative design tools, 2005Google Scholar
  23. 23.
    M. Hemberg, U.-M. O’Reilly, P. Nordin, et al. GENR8 - a design tool for surface generation, in GECCO Late Breaking Papers, pp160–167, San Francisco (2001), pages 9–11Google Scholar
  24. 24.
    M. Hemberg, U.-M. O’Reilly, A. Menges, K. Jonas, M. Goncalves, S. Fuchs, Exploring generative growth and evolutionary computation for architectural design. Art of Artificial Evolution (Springer, Heidelberg 2006)Google Scholar
  25. 25.
    M. Hemberg, U.-M. O’Reilly, A. Menges, K. Jonas, M. da Costa Gonçalves, S.R. Fuchs, GENR8: architects’ experience with an emergent design tool, in The Art of Artificial Evolution (Springer, Berlin, 2008), pp. 167–188Google Scholar
  26. 26.
    G.S. Hornby, J.B. Pollack, The advantages of generative grammatical encodings for physical design, in Proceedings of the 2001 Congress on Evolutionary Computation, 2001, vol. 1 (IEEE, New York, 2001), pp. 600–607Google Scholar
  27. 27.
    J. Hughes, Why functional programming matters. Comput. J. 32(2), 98–107 (1989)CrossRefGoogle Scholar
  28. 28.
    A. Jordanous, Evaluating evaluation: assessing progress in computational creativity research, in Proceedings of the Second International Conference on Computational Creativity (ICCC-11). Mexico City, Mexico (2011), pp. 102–107Google Scholar
  29. 29.
    S. Le, San Le’s Free Finite Element Analysis (SLFFEA) (2008), http://slffea.sourceforge.net/
  30. 30.
    A. Lindenmayer, Mathematical models for cellular interactions in development I. filaments with one-sided inputs. J. Theor. Biol. 18(3), 280–299 (1968)Google Scholar
  31. 31.
    J. McDermott, Graph grammars as a representation for interactive evolutionary 3d design, in International Conference on Evolutionary and Biologically Inspired Music and Art (Springer, Berlin, 2012), pp. 199–210Google Scholar
  32. 32.
    J. McDermott, Graph grammars for evolutionary 3d design. Genet. Program Evolvable Mach. 14(3), 369–393 (2013)CrossRefGoogle Scholar
  33. 33.
    J. McDermott, E. Hemberg, Logo design by grammatical evolution of L-Systems. GECCO art competition entry (2011)Google Scholar
  34. 34.
    J. McDermott, J. Byrne, J.M. Swafford, M. O’Neill, A. Brabazon, Higher-order functions in aesthetic EC encodings, in 2010 IEEE Congress on Evolutionary Computation (CEC) (IEEE, New York, 2010), pp. 1–8Google Scholar
  35. 35.
    J. McDermott, J.M. Swafford, M. Hemberg, J. Byrne, E. Hemberg, M. Fenton, C. McNally, E. Shotton, M. O’Neill, String-rewriting grammars for evolutionary architectural design. Environ. Plann. B. Plann. Des. 39(4), 713–731 (2012)CrossRefGoogle Scholar
  36. 36.
    S. Moaveni, Finite Element Analysis Theory and Application with ANSYS (Pearson Education India, New Delhi, 2008)Google Scholar
  37. 37.
    S. Mullins, J. R. Rinderle, Grammatical approaches to engineering design, part I: an introduction and commentary. Res. Eng. Des. 2(3), 121–135 (1991)CrossRefGoogle Scholar
  38. 38.
    K. Murawski, T. Arciszewski, K. De Jong, Evolutionary computation in structural design. Eng. Comput. 16(3), 275–286 (2000). ISSN 1435-5663. http://dx.doi.org/10.1007/PL00013716 CrossRefGoogle Scholar
  39. 39.
    M. Nicolau, D. Costelloe, Using grammatical evolution to parameterise interactive 3d image generation, in European Conference on the Applications of Evolutionary Computation (Springer, Berlin, 2011), pp. 374–383Google Scholar
  40. 40.
    F. Obermeyer, Jenn3D for visualizing coxeter polytopes, 2010, http://www.math.cmu.edu/~fho/jenn/
  41. 41.
    M. O’Neil, C. Ryan, Grammatical Evolution (Springer, Berlin, 2003)CrossRefGoogle Scholar
  42. 42.
    M. O’Neill, A. Brabazon, Evolving a logo design using lindenmayer systems, postscript & grammatical evolution, in IEEE Congress on Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence) (IEEE, New York, 2008), pp. 3788–3794Google Scholar
  43. 43.
    M. O’Neill, E. Hemberg, C. Gilligan, E. Bartley, J. McDermott, A. Brabazon, GEVA: grammatical evolution in Java. ACM SIGEVOlution 3(2), 17–22 (2008)CrossRefGoogle Scholar
  44. 44.
    M. O’Neill, J.M. Swafford, J. McDermott, J. Byrne, A. Brabazon, E. Shotton, C. McNally, M. Hemberg, Shape grammars and grammatical evolution for evolutionary design, in Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (ACM, New York, 2009), pp. 1035–1042Google Scholar
  45. 45.
    M. O’Neill, J. McDermott, J.M. Swafford, J. Byrne, E. Hemberg, A. Brabazon, E. Shotton, C. McNally, M. Hemberg, Evolutionary design using grammatical evolution and shape grammars: designing a shelter. Int. J. Des. Eng. 3(1), 4–24 (2010)Google Scholar
  46. 46.
    U.-M. O’Reilly, M. Hemberg, Integrating generative growth and evolutionary computation for form exploration. Genet. Program Evolvable Mach. 8(2), 163–186 (2007)CrossRefGoogle Scholar
  47. 47.
    A. Ortega, A.A. Dalhoum, M. Alfonseca, Grammatical evolution to design fractal curves with a given dimension. IBM J. Res. Dev. 47(4), 483–493 (2003)CrossRefGoogle Scholar
  48. 48.
    P. Prusinkiewicz, J. Hanan, Lindenmayer Systems, Fractals, and Plants, vol. 79 (Springer Science & Business Media, Berlin, 2013)zbMATHGoogle Scholar
  49. 49.
    J.R. Rinderle, Grammatical approaches to engineering design, part II: melding configuration and parametric design using attribute grammars. Res. Eng. Des. 2(3), 137–146 (1991)CrossRefGoogle Scholar
  50. 50.
    F. Rothlauf, M. Oetzel, On the locality of grammatical evolution, in European Conference on Genetic Programming (Springer, Berlin, 2006), pp. 320–330Google Scholar
  51. 51.
    G. Stiny, Introduction to shape and shape grammars. Environ. Plann. B. Plann. Des. 7(3), 343–351 (1980)CrossRefGoogle Scholar
  52. 52.
    G. Stiny, J. Gips, Shape grammars and the generative specification of painting and sculpture, in IFIP Congress (2), vol. 2 (1971)Google Scholar
  53. 53.
    H. Takagi, Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proc. IEEE 89(9), 1275–1296 (2001). ISSN 0018-9219. https://doi.org/10.1109/5.949485 CrossRefGoogle Scholar
  54. 54.
    C.M. Vogel, J. Cagan, P. Boatwright, The Design of Things to Come: How Ordinary People Create Extraordinary Products (Wharton School Publishing, Upper Saddle River, 2005)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Michael Fenton
    • 1
  • Jonathan Byrne
    • 2
  • Erik Hemberg
    • 3
  1. 1.Data Science and Machine Learning GroupCorvil LtdDublinIreland
  2. 2.Computer Vision Research GroupIntel LtdLeixlip, County KildareIreland
  3. 3.Computer Science and Artificial Intelligence Lab (CSAIL)MITBostonUSA

Personalised recommendations