Metabolism of Synthetic Cathinones

Chapter
Part of the Current Topics in Neurotoxicity book series (Current Topics Neurotoxicity, volume 12)

Abstract

Synthetic cathinones have recently emerged and are abused worldwide. To date, numerous cathinone derivatives have been identified as new psychoactive substances, and their chemical structures have gradually become complicated. Accordingly, metabolic pathways of synthetic cathinones differ depending on their chemical structures, and forensic toxicologists are critically required to fully understand their metabolism features in order to prove the intake of such cathinone derivatives. In this chapter, major phase I metabolic pathways of cathinones are classified according to their chemical structures, and the differences in their metabolic profiles are discussed on the basis of in vivo and in vitro metabolism studies. Although there is limited information on phase II metabolism of synthetic cathinones, some characterized pathways such as glucuronidation and sulfation, which are identified not only for their hydrolyzed- and/or hydroxylated-metabolites but also for unchanged cathinone derivatives, are also described.

Keywords

Synthetic cathinones Metabolism Phase I metabolism Phase II metabolism 

References

  1. Brenneisen R, Geisshüsler S, Schorno X (1986) Metabolism of cathinone to (−)-norephedrine and (−)-norpseudoephedrine. J Pharm Pharmacol 38(4):298–300.  https://doi.org/10.1111/j.2042-7158.1986.tb04571.xCrossRefPubMedGoogle Scholar
  2. Caldwell J, Dring LG, Williams RT (1972) Metabolism of [14C]methamphetamine in man, the guinea pig and the rat. Biochem J 129(1):11–22.  https://doi.org/10.1042/bj1290011CrossRefPubMedPubMedCentralGoogle Scholar
  3. Guantai AN, Maitai CK (1983) Metabolism of cathinone to d-norpseudoephedrine in humans. J Pharm Sci 72(10):1217–1218.  https://doi.org/10.1002/jps.2600721029CrossRefPubMedGoogle Scholar
  4. Hisatsune K, Zaitsu K, Kusano M et al (2015) Determination of newly encountered designer drugs α-PHP and acetylfentanyl in an acute intoxication case by LC/Q-TOFMS. In: Proceedings of the 53rd annual meeting of the international association of forensic toxicologists, Fiorentina, Italy, 31 August 2015Google Scholar
  5. Kamata HT, Shima N, Zaitsu K et al (2006) Metabolism of the recently encountered designer drug, methylone, in humans and rats. Xenobiotica 36(8):709–723.  https://doi.org/10.1080/00498250600780191CrossRefPubMedGoogle Scholar
  6. Kelly JP (2011) Cathinone derivatives: a review of their chemistry, pharmacology and toxicology. Drug Test Anal 3(7–8):439–453.  https://doi.org/10.1002/dta.313CrossRefPubMedGoogle Scholar
  7. Khreit OIG, Grant MH, Zhang T et al (2013) Elucidation of the phase I and phase II metabolic pathways of (±)-4′-methylmethcathinone (4-MMC) and (±)-4′-(trifluoromethyl)methcathinone (4-TFMMC) in rat liver hepatocytes using LC–MS and LC–MS2. J Pharm Biomed Anal 72(Supplement C):177–185.  https://doi.org/10.1016/j.jpba.2012.08.015CrossRefGoogle Scholar
  8. Lho D-S, Lee J, Kim S et al (1996) Identification of a pyrovalerone metabolite in the rat by gas chromatography-mass spectrometry and determination of pyrovalerone by gas chromatography-nitrogen-phosphorus detection. J Chromatogr B Biomed Appl 687(1):253–259.  https://doi.org/10.1016/S0378-4347(96)00183-1CrossRefPubMedGoogle Scholar
  9. Matsuta S, Shima N, Kamata H et al (2015) Metabolism of the designer drug α-pyrrolidinobutiophenone (α-PBP) in humans: identification and quantification of the phase I metabolites in urine. Forensic Sci Int 249(Supplement C):181–188.  https://doi.org/10.1016/j.forsciint.2015.02.004CrossRefGoogle Scholar
  10. Meyer MR, Peters FT, Maurer HH (2008) The role of human hepatic cytochrome P450 isozymes in the metabolism of racemic 3,4-methylenedioxymethamphetamine and its enantiomers. Drug Metab Dispos 36(11):2345–2354.  https://doi.org/10.1124/dmd.108.021543CrossRefPubMedGoogle Scholar
  11. Meyer MR, Du P, Schuster F, Maurer HH (2010a) Studies on the metabolism of the α-pyrrolidinophenone designer drug methylenedioxy-pyrovalerone (MDPV) in rat and human urine and human liver microsomes using GC–MS and LC–high-resolution MS and its detectability in urine by GC–MS. J Mass Spectr 45(12):1426–1442.  https://doi.org/10.1002/jms.1859CrossRefGoogle Scholar
  12. Meyer MR, Wilhelm J, Peters FT, Maurer HH (2010b) Beta-keto amphetamines: studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone, butylone, and methylone in urine using gas chromatography–mass spectrometry. Anal Bioanal Chem 397(3):1225–1233.  https://doi.org/10.1007/s00216-010-3636-5CrossRefPubMedPubMedCentralGoogle Scholar
  13. Meyer MR, Vollmar C, Schwaninger AE et al (2012) New cathinone-derived designer drugs 3-bromomethcathinone and 3-fluoromethcathinone: studies on their metabolism in rat urine and human liver microsomes using GC–MS and LC–high-resolution MS and their detectability in urine. J Mass Spectr 47(2):253–262.  https://doi.org/10.1002/jms.2960CrossRefGoogle Scholar
  14. Meyer MR, Prosser D, Maurer HH (2013) Studies on the metabolism and detectability of the designer drug β-naphyrone in rat urine using GC-MS and LC-HR-MS/MS. Drug Test Anal 5(4):259–265.  https://doi.org/10.1002/dta.1443CrossRefPubMedGoogle Scholar
  15. Meyer MR, Mauer S, Meyer GMJ et al (2014) The in vivo and in vitro metabolism and the detectability in urine of 3′,4′-methylenedioxy-alpha-pyrrolidinobutyrophenone (MDPBP), a new pyrrolidinophenone-type designer drug, studied by GC-MS and LC-MSn. Drug Test Anal 6(7–8):746–756.  https://doi.org/10.1002/dta.1559CrossRefPubMedGoogle Scholar
  16. Michaelis W, Russel JH, Schindler O (1970) Metabolism of pyrovalerone hydrochloride. J Med Chem 13(3):497–503.  https://doi.org/10.1021/jm00297a036CrossRefPubMedGoogle Scholar
  17. Namera A, Konuma K, Kawamura M et al (2014) Time-course profile of urinary excretion of intravenously administered α-pyrrolidinovalerophenone and α-pyrrolidinobutiophenone in a human. Forensic Toxicol 32(1):68–74.  https://doi.org/10.1007/s11419-013-0203-8CrossRefGoogle Scholar
  18. Negreira N, Erratico C, Kosjek T et al (2015) In vitro phase I and phase II metabolism of α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV) and methedrone by human liver microsomes and human liver cytosol. Anal Bioanal Chem 407(19):5803–5816.  https://doi.org/10.1007/s00216-015-8763-6CrossRefPubMedGoogle Scholar
  19. Paul BD, Cole KA (2001) Cathinone (Khat) and methcathinone (CAT) in urine specimens: a gas chromatographic-mass spectrometric detection procedure. J Anal Toxicol 25(7):525–530.  https://doi.org/10.1093/jat/25.7.525CrossRefPubMedGoogle Scholar
  20. Paul M, Bleicher S, Guber S et al (2015) Identification of phase I and II metabolites of the new designer drug α-pyrrolidinohexiophenone (α-PHP) in human urine by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). J Mass Spectr 50(11):1305–1317.  https://doi.org/10.1002/jms.3642CrossRefGoogle Scholar
  21. Pawlik E, Plässer G, Mahler H, Daldrup T (2012) Studies on the phase I metabolism of the new designer drug 3-fluoromethcathinone using rabbit liver slices. Int J Legal Med 126(2):231–240.  https://doi.org/10.1007/s00414-011-0601-6CrossRefPubMedGoogle Scholar
  22. Pedersen AJ, Reitzel LA, Johansen SS, Linnet K (2013) In vitro metabolism studies on mephedrone and analysis of forensic cases. Drug Test Anal 5(6):430–438.  https://doi.org/10.1002/dta.1369CrossRefPubMedGoogle Scholar
  23. Peters FT, Meyer MR, Fritschi G, Maurer HH (2005) Studies on the metabolism and toxicological detection of the new designer drug 4′-methyl-α-pyrrolidinobutyrophenone (MPBP) in rat urine using gas chromatography–mass spectrometry. J Chromatogr B 824(1):81–91.  https://doi.org/10.1016/j.jchromb.2005.07.003CrossRefGoogle Scholar
  24. Sauer C, Peters FT, Haas C, Meyer MR, Fritschi G, Maurer HH (2009) New designer drug α-pyrrolidinovalerophenone (PVP): studies on its metabolism and toxicological detection in rat urine using gas chromatographic/mass spectrometric techniques. J Mass Spectrom 44:952–964Google Scholar
  25. Schreiber EC, Min BH, Zeiger AV, Lang JF (1968) Metabolism of diethylpropion-1-C14 hydrochloride by the human. J Pharm Exp Ther 159(2):372–378Google Scholar
  26. Shima N, Katagi M, Kamata HZ et al (2008) Urinary excretion of the main metabolites of 3,4-methylenedioxymethamphetamine (MDMA), including the sulfate and glucuronide of 4-hydroxy-3-methoxymethamphetamine (HMMA), in humans and rats. Xenobiotica 38(3):314–324.  https://doi.org/10.1080/00498250701802506CrossRefPubMedGoogle Scholar
  27. Shima N, Katagi M, Kamata H et al (2013) Urinary excretion and metabolism of the newly encountered designer drug 3,4-dimethylmethcathinone in humans. Forensic Toxicol 31(1):101–112.  https://doi.org/10.1007/s11419-012-0172-3CrossRefGoogle Scholar
  28. Shima N, Katagi M, Kamata H et al (2014) Metabolism of the newly encountered designer drug α-pyrrolidinovalerophenone in humans: identification and quantitation of urinary metabolites. Forensic Toxicol 32(1):59–67.  https://doi.org/10.1007/s11419-013-0202-9CrossRefGoogle Scholar
  29. Shima N, Kakehashi H, Matsuta S et al (2015) Urinary excretion and metabolism of the α-pyrrolidinophenone designer drug 1-phenyl-2-(pyrrolidin-1-yl)octan-1-one (PV9) in humans. Forensic Toxicol 33(2):279–294.  https://doi.org/10.1007/s11419-015-0274-9CrossRefGoogle Scholar
  30. Shin H-S, Shin Y-SO, Lee S, Park BB (1996) Detection and identification of pyrovalerone and its hydroxylated metabolite in the rat. J Anal Toxicol 20(7):568–572.  https://doi.org/10.1093/jat/20.7.568CrossRefPubMedGoogle Scholar
  31. Springer D, Fritschi G, Maurer HH (2003a) Metabolism and toxicological detection of the new designer drug 3′,4′-methylenedioxy-α-pyrrolidinopropiophenone studied in urine using gas chromatography–mass spectrometry. J Chromatogr B 793(2):377–388.  https://doi.org/10.1016/S1570-0232(03)00350-7CrossRefGoogle Scholar
  32. Springer D, Fritschi G, Maurer HH (2003b) Metabolism and toxicological detection of the new designer drug 4′-methoxy-α-pyrrolidinopropiophenone studied in rat urine using gas chromatography–mass spectrometry. J Chromatogr B 793(2):331–342.  https://doi.org/10.1016/S1570-0232(03)00334-9CrossRefGoogle Scholar
  33. Springer D, Fritschi G, Maurer HH (2003c) Metabolism of the new designer drug α-pyrrolidinopropiophenone (PPP) and the toxicological detection of PPP and 4′-methyl-α-pyrrolidinopropiophenone (MPPP) studied in rat urine using gas chromatography-mass spectrometry. J Chromatogr B 796(2):253–266.  https://doi.org/10.1016/j.jchromb.2003.07.008CrossRefGoogle Scholar
  34. Springer D, Peters FT, Fritschi G, Maurer HH (2003d) New designer drug 4′-methyl-α-pyrrolidinohexanophenone: studies on its metabolism and toxicological detection in urine using gas chromatography–mass spectrometry. J Chromatogr B 789(1):79–91.  https://doi.org/10.1016/S1570-0232(03)00043-6CrossRefGoogle Scholar
  35. Staack RF, Maurer HH (2005) Metabolism of designer drugs of abuse. Curr Drug Metab 6(3):259–274.  https://doi.org/10.2174/1389200054021825CrossRefPubMedGoogle Scholar
  36. Staack RF, Theobald DS, Paul LD et al (2004) Identification of human cytochrome P450 2D6 as major enzyme involve in the O-demethylation of the designer drug p-methoxymethamphetamine. Drug Metab Dispos 2(4):379–381.  https://doi.org/10.1124/dmd.32.4.379CrossRefGoogle Scholar
  37. Swortwood MWA, Concheiro M, Marilyn AH (2016a) In vitro, in vivo and in silico metabolic profiling of α-pyrrolidinopentiothiophenone, a novel thiophene stimulant. Bioanalysis 8(1):65–82.  https://doi.org/10.4155/bio.15.237CrossRefPubMedGoogle Scholar
  38. Swortwood MJ, Ellefsen KN, Wohlfarth A et al (2016b) First metabolic profile of PV8, a novel synthetic cathinone, in human hepatocytes and urine by high-resolution mass spectrometry. Anal Bioanal Chem 408(18):4845–4856.  https://doi.org/10.1007/s00216-016-9599-4CrossRefPubMedGoogle Scholar
  39. Testa B, Beckett AH (1972) Studies on the metabolism of diethylpropion: I. Analytical procedure. J Chromatogr A 71(1):39–54.  https://doi.org/10.1016/S0021-9673(01)85688-0CrossRefGoogle Scholar
  40. Testa B, Beckett AH (1973) Metabolism and excretion of diethylpropion in man under acidic urine conditions. J Pharm Pharmacol 25(2):119–124.  https://doi.org/10.1111/j.2042-7158.1973.tb10604.xCrossRefPubMedGoogle Scholar
  41. Tyrkkö E, Pelander A, Ketola RA, Ojanperä I (2013) In silico and in vitro metabolism studies support identification of designer drugs in human urine by liquid chromatography/quadrupole-time-of-flight mass spectrometry. Anal Bioanal Chem 405(21):6697–6709.  https://doi.org/10.1007/s00216-013-7137-1CrossRefPubMedGoogle Scholar
  42. Valente MJ, Guedes de Pinho P, de Lourdes Bastos M et al (2014) Khat and synthetic cathinones: a review. Arch Toxicol 88(1):15–45.  https://doi.org/10.1007/s00204-013-1163-9CrossRefPubMedGoogle Scholar
  43. Wikström M, Thelander G, Nyström I, Kronstrand R (2010) Two fatal intoxications with the new designer drug methedrone (4-methoxymethcathinone). J Anal Toxicol 34(9):594–598.  https://doi.org/10.1093/jat/34.9.594CrossRefPubMedGoogle Scholar
  44. Zaitsu K, Katagi M, Kamata T et al (2008) Determination of a newly encountered designer drug “p-methoxyethylamphetamine” and its metabolites in human urine and blood. Forensic Sci Int 177(1):77–84.  https://doi.org/10.1016/j.forsciint.2007.11.001CrossRefPubMedGoogle Scholar
  45. Zaitsu K, Katag M, Kamata HT et al (2009) Determination of the metabolites of the new designer drugs bk-MBDB and bk-MDEA in human urine. Forensic Sci Int 188(1):131–139.  https://doi.org/10.1016/j.forsciint.2009.04.001CrossRefPubMedGoogle Scholar
  46. Zaitsu K, Katagi M, Tatsuno M et al (2011) Recently abused β-keto derivatives of 3,4-methylenedioxyphenylalkylamines: a review of their metabolisms and toxicological analysis. Forensic Toxicol 29(2):73–84.  https://doi.org/10.1007/s11419-011-0111-8CrossRefGoogle Scholar
  47. Zaitsu K, Katagi M, Tsuchihashi H, Ishii A (2014) Recently abused synthetic cathinones, α-pyrrolidinophenone derivatives: a review of their pharmacology, acute toxicity, and metabolism. Forensic Toxicol 32(1):1–8.  https://doi.org/10.1007/s11419-013-0218-1CrossRefGoogle Scholar
  48. Zawilska JB, Wojcieszak J (2013) Designer cathinones—an emerging class of novel recreational drugs. Forensic Sci Int 231(1):42–53.  https://doi.org/10.1016/j.forsciint.2013.04.015CrossRefPubMedGoogle Scholar
  49. Židková M, Linhart I, Balíková M et al (2017) Identification of three new phase II metabolites of a designer drug methylone formed in rats by N-demethylation followed by conjugation with dicarboxylic acids. Xenobiotica 1–8.  https://doi.org/10.1080/00498254.2017.1349964

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Legal Medicine and BioethicsNagoya University Graduate School of MedicineShowa-ku, NagoyaJapan

Personalised recommendations