Analytical Methods Used for Identification and Determination of Synthetic Cathinones and Their Metabolites

Chapter
Part of the Current Topics in Neurotoxicity book series (Current Topics Neurotoxicity, volume 12)

Abstract

Synthetic cathinones are a broad group of chemicals, which have very similar structure. Many substances seized from the drug market are isomers, homologues, analogues, etc. They follow similar metabolism processes, and often convert in the human body to the same metabolites; some being also cathinone derivatives. Moreover, active doses differ significantly among drugs, causing that the levels of cathinones and their metabolites in the body fluids and tissues are in a broad range, from low ng/mL to hundreds mg/L. A variety of analytical techniques is applied to identify synthetic cathinones in seized drugs. Unequivocal identification of an active substance is crucial, especially in countries with individual drug control system, as the legal consequences for, e.g. possession of different isomers may vary substantially. Gas chromatography–mass spectrometry (GC-MS) is the most commonly method used for preliminary identification in forensic laboratories, but it has to be supported by other techniques, e.g. by Fourier-transformed infrared spectrometry (FTIR), nuclear magnetic resonance (NMR) and liquid chromatography with different detectors, mainly tandem mass spectrometers. Synthetic cathinones are analysed in different biological matrices, including blood, serum, plasma, dried blood spots, urine, hair, oral fluid and postmortem body tissues. Samples are prepared for the analysis, e.g. by dilution, precipitation, liquid–liquid extraction (LLE) and solid phase extraction (SPE). Enzyme hydrolysis (especially for urine), washing out or digestion (for hair), and derivatization are also included in some procedures. Triple quadrupole LC-MS/MS systems are the most frequently used. Many analytical challenges cause that more sophisticated techniques, including liquid chromatography-high-resolution mass spectrometry (LC-HRMS), are increasingly applied in the analysis of biological materials for the identification and quantitation of cathinones.

Keywords

Synthetic cathinones Seized material Biological material Analytical methods GC-MS LC-MS HPLC-DAD 

Abbreviations

ATR

Attenuated total reflectance technique

CE

Capillary electrophoresis

CI

Chemical ionization

DART-MS

Direct analysis in real time-mass spectrometry

DAD

Diode array detection

DBS

Dried blood spots

DESI-MS

Desorption electrospray ionization-mass spectrometry

DLLME

Dispersive liquid–liquid microextraction

EI

Electron impact ionization

ELISA

Enzyme-linked immunosorbent assay

ENFSI

European Network of Forensic Science Institutes

ESI

Electrospray ionization

FTIR

Fourier-transformed infrared spectrometry

GC

Gas chromatography

GC-EI-MS

Gas chromatography–electron impact–mass spectrometry

GC-FID

Gas chromatography with flame ionization detector

GC-MS

Gas chromatography–mass spectrometry

HPLC-DAD

High-performance liquid chromatography with diode array detection

HRMS

High-resolution mass spectrometry

IMS

Ion mobility spectrometry

IR

Infrared spectroscopy

LC

Liquid chromatography

LC-HRMS

Liquid chromatography-high resolution mass spectrometry

LC-HRMS/MS

Liquid chromatography-high resolution multiple mass spectrometry

LC-MS

Liquid chromatography–mass spectrometry

LC-MS/MS

Liquid chromatography-tandem mass spectrometry

LC-ESI-QTOFMS

Liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry

LC-QTOFMS

Liquid chromatography-quadrupole time-of-flight mass spectrometry

LLE

Liquid–liquid extraction

LOD

Limit of detection

MALDI-TOF

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

MRM

Multiple reaction monitoring

MS

Mass spectrometry

MS/MS

Tandem mass spectrometry

NIR

Near infrared

NMR

Nuclear magnetic resonance

μ-SPE

Miniaturized solid phase extraction

PP

Protein precipitation

QqQ

Triple quadrupole

QTOF

Hybrid quadrupole time-of-flight analyser

SALLE

Salting out liquid–liquid extraction

SIM

Selected ion monitoring

SLE

Supported liquid extraction

SPE

Solid phase extraction

SPME

Solid phase microextraction

SWGDRUG

Scientific Working Group for the Analysis of Seized Drugs

RF-MS-MS

RapidFire tandem mass spectrometry

UHPLC-DAD

Ultra high-performance liquid chromatography with diode array detection

UHPLC-MS

Ultra high-performance liquid chromatography–mass spectrometry

UV/VIS

Ultraviolet/visible spectroscopy

VAMS

Volumetric absorptive microsampling

References

  1. Adamowicz P, Tokarczyk B (2016) Simple and rapid screening procedure for 143 new psychoactive substances by liquid chromatography-tandem mass spectrometry. Drug Test Anal 8(7):652–667.  https://doi.org/10.1002/dta.1815CrossRefPubMedGoogle Scholar
  2. Al-Saffar Y, Stephanson NN, Beck O (2013) Multicomponent LC-MS/MS screening method for detection of new psychoactive drugs, legal highs, in urine—experience from the Swedish population. J Chromatogr B 930:112–120.  https://doi.org/10.1016/j.jchromb.2013.04.043CrossRefGoogle Scholar
  3. Alvarez JC, Etting I, Abe E et al (2017) Identification and quantification of 4-methylethcathinone (4-MEC) and 3,4-methylenedioxypyrovalerone (MDPV) in hair by LC-MS/MS after chronic administration. Forensic Sci Int 270:39–45.  https://doi.org/10.1016/j.forsciint.2016.11.028CrossRefPubMedGoogle Scholar
  4. Amaratunga P, Lorenz Lemberg B, Lemberg D (2013) Quantitative measurement of synthetic cathinones in oral fluid. J Anal Toxicol 37(9):622–628.  https://doi.org/10.1093/jat/bkt080CrossRefPubMedGoogle Scholar
  5. Ambach L, Hernández Redondo A, König S et al (2014) Rapid and simple LC-MS/MS screening of 64 novel psychoactive substances using dried blood samples. Drug Test Anal 6(4):367–375.  https://doi.org/10.1002/dta.1505CrossRefPubMedGoogle Scholar
  6. Ambach L, Redondo AH, König S et al (2015) Detection and quantification of 56 new psychoactive substances in whole blood and urine by LC-MS/MS. Bioanalysis 7(9):1119–1136.  https://doi.org/10.4155/bio.15.48CrossRefPubMedGoogle Scholar
  7. Ammann D, McLaren JM, Gerostamoulos D et al (2012) Detection and quantification of new designer drugs in human blood: part 2—designer cathinones. J Anal Toxicol 36(6):381–389.  https://doi.org/10.1093/jat/bks049CrossRefPubMedGoogle Scholar
  8. Armenta S, Garrigues S, de la Guardia M et al (2015) Detection and characterization of emerging psychoactive substances by ion mobility spectrometry. Drug Test Anal 7(4):280–289.  https://doi.org/10.1002/dta.1678CrossRefPubMedGoogle Scholar
  9. Baciu T, Borrull F, Calull M et al (2016) Enantioselective determination of cathinone derivatives in human hair by capillary electrophoresis combined in-line with solid-phase extraction. Electrophoresis 37(17-18):2352–2362.  https://doi.org/10.1002/elps.201600149CrossRefPubMedGoogle Scholar
  10. Bell C, George C, Kicman AT et al (2011) Development of a rapid LC-MS/MS method for direct urinalysis of designer drugs. Drug Test Anal 3(7–8):496–504.  https://doi.org/10.1002/dta.306CrossRefPubMedGoogle Scholar
  11. Bertol E, Mari F, Boscolo Berto R et al (2014) A mixed MDPV and benzodiazepine intoxication in a chronic drug abuser: determination of MDPV metabolites by LC-HRMS and discussion of the case. Forensic Sci Int 243:149–155.  https://doi.org/10.1016/j.forsciint.2014.08.002CrossRefPubMedGoogle Scholar
  12. Concheiro M, Anizan S, Ellefsen K et al (2013) Simultaneous quantification of 28 synthetic cathinones and metabolites in urine by liquid chromatography-high resolution mass spectrometry. Anal Bioanal Chem 405:9437–9448.  https://doi.org/10.1007/s00216-013-7386-zCrossRefPubMedGoogle Scholar
  13. Concheiro M, Castaneto M, Kronstrand R et al (2015) Simultaneous determination of 40 novel psychoactive stimulants in urine by liquid chromatography-high resolution mass spectrometry and library matching. J Chromatogr A 1397:32–42.  https://doi.org/10.1016/j.chroma.2015.04.002CrossRefPubMedPubMedCentralGoogle Scholar
  14. de Castro A, Lendoiro E, Fernández-Vega H et al (2014) Liquid chromatography tandem mass spectrometry determination of selected synthetic cathinones and two piperazines in oral fluid. Cross reactivity study with an on-site immunoassay device. J Chromatogr A 1374:93–101.  https://doi.org/10.1016/j.chroma.2014.11.024CrossRefPubMedGoogle Scholar
  15. Ellefsen KN, Anizan S, Castaneto MS et al (2014) Validation of the only commercially available immunoassay for synthetic cathinones in urine: randox drugs of abuse V biochip array technology. Drug Test Anal 6(7-8):728–738.  https://doi.org/10.1002/dta.1633CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ellefsen KN, Concheiro M, Huestis MA (2016) Synthetic cathinone pharmacokinetics, analytical methods, and toxicological findings from human performance and postmortem cases. Drug Metab Rev 48(2):237–265.  https://doi.org/10.1080/03602532.2016.1188937CrossRefPubMedGoogle Scholar
  17. Glicksberg L, Bryand K, Kerrigan S (2016) Identification and quantification of synthetic cathinones in blood and urine using liquid chromatography-quadrupole/time of flight (LC-Q/TOF) mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 1035:91–103.  https://doi.org/10.1016/j.jchromb.2016.09.027CrossRefPubMedGoogle Scholar
  18. Grapp M, Kaufmann C, Ebbecke M (2017) Toxicological investigation of forensic cases related to the designer drug 3,4-methylenedioxypyrovalerone (MDPV): detection, quantification and studies on human metabolism by GC-MS. Forensic Sci Int 273:1–9.  https://doi.org/10.1016/j.forsciint.2017.01.021CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gwak S, Arroyo-Mora LE, Almirall JR (2015) Qualitative analysis of seized synthetic cannabinoids and synthetic cathinones by gas chromatography triple quadrupole tandem mass spectrometry. Drug Test Anal 7(2):121–130.  https://doi.org/10.1002/dta.1667CrossRefPubMedGoogle Scholar
  20. Hong WY, Ko YC, Lin MC et al (2016) Determination of synthetic cathinones in urine using gas chromatography-mass spectrometry techniques. J Anal Toxicol 40(1):12–16.  https://doi.org/10.1093/jat/bkv108CrossRefPubMedGoogle Scholar
  21. Johnson RD, Botch-Jones SR (2013) The stability of four designer drugs: MDPV, mephedrone, BZP and TFMPP in three biological matrices under various storage conditions. J Anal Toxicol 37(2):51–55.  https://doi.org/10.1093/jat/bks138CrossRefPubMedGoogle Scholar
  22. Joshi M, Cetroni B, Camacho A et al (2014) Analysis of synthetic cathinones and associated psychoactive substances by ion mobility spectrometry. Forensic Sci Int 244:196–206.  https://doi.org/10.1016/j.forsciint.2014.08.033CrossRefPubMedGoogle Scholar
  23. Kerrigan S, Savage M, Cavazos C et al (2016) Thermal degradation of synthetic cathinones: implications for forensic toxicology. J Anal Toxicol 40(1):1–11.  https://doi.org/10.1093/jat/bkv099CrossRefPubMedGoogle Scholar
  24. LaPointe J, Musselman B, O’Neill T et al (2015) Detection of “bath salt” synthetic cathinones and metabolites in urine via DART-MS and solid phase microextraction. J Am Soc Mass Spectrom 26(1):159–165.  https://doi.org/10.1007/s13361-014-1006-9CrossRefPubMedGoogle Scholar
  25. Lendoiro E, Jiménez-Morigosa C, Cruz A et al (2017) An LC-MS/MS methodological approach to the analysis of hair for amphetamine-type-stimulant (ATS) drugs, including selected synthetic cathinones and piperazines. Drug Test Anal 9(1):96–105.  https://doi.org/10.1002/dta.1948CrossRefPubMedGoogle Scholar
  26. Liu C, Jia W, Li T et al (2017) Identification and analytical characterization of nine synthetic cathinone derivatives N-ethylhexedrone, 4-Cl-pentedrone, 4-Cl-α-EAPP, propylone, N-ethylnorpentylone, 6-MeO-bk-MDMA, & α-PiHP, 4-Cl-α-PHP, and 4-F-α-PHP. Drug Test Anal 9(8):1162–1171.  https://doi.org/10.1002/dta.2136CrossRefPubMedGoogle Scholar
  27. Marinetti LJ, Antonides HM (2013) Analysis of synthetic cathinones commonly found in bath salts in human performance and postmortem toxicology: Method development, drug distribution and interpretation of results. J Anal Toxicol 37(3):135–146.  https://doi.org/10.1093/jat/bks136CrossRefPubMedGoogle Scholar
  28. Mayer M, Benko A, Huszár A et al (2013) Simultaneous determination of 4-substituted cathinones (4-MMC, 4-MEC and 4-FMC) in human urine by HPLC-DAD. J Chromatogr Sci 51(9):861–866.  https://doi.org/10.1093/chromsci/bms183CrossRefPubMedGoogle Scholar
  29. Mercolini L, Protti M, Catapano MC et al (2016) LC-MS/MS and volumetric absorptive microsampling for quantitative bioanalysis of cathinone analogues in dried urine, plasma and oral fluid samples. J Pharm Biomed Anal 123:186–194.  https://doi.org/10.1016/j.jpba.2016.02.015CrossRefPubMedGoogle Scholar
  30. Meyer MR, Maurer HH (2016) Review: LC coupled to low- and high-resolution mass spectrometry for new psychoactive substance screening in biological matrices—where do we stand today? Anal Chim Acta 927:13–20.  https://doi.org/10.1016/j.aca.2016.04.046CrossRefPubMedGoogle Scholar
  31. Meyer MR, Du P, Schuster F et al (2010a) Studies on the metabolism of the α-pyrrolidinophenone designer drug methylenedioxypyrovalerone (MDPV) in rat and human urine and human liver microsomes using GC-MS and LC-high-resolution MS and its detectability in urine by GC-MS. J Mass Spectrom 45:1426–1442.  https://doi.org/10.1002/jms.1859CrossRefPubMedGoogle Scholar
  32. Meyer MR, Wilhelm J, Peters FT et al (2010b) Beta-keto amphetamines: studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone, butylone, and methylone in urine using gas chromatography-mass spectrometry. Anal Bioanal Chem 397(3):1225–1233.  https://doi.org/10.1007/s00216-010-3636-5CrossRefPubMedGoogle Scholar
  33. Miller B, Kim J, Concheiro M (2017) Stability of synthetic cathinones in oral fluid samples. Forensic Sci Int 274:13–21.  https://doi.org/10.1016/j.forsciint.2016.11.034CrossRefPubMedPubMedCentralGoogle Scholar
  34. Milman BL (2011) Chemical identification and its quality assurance. Springer, Berlin Heidelberg.  https://doi.org/10.1007/978-3-642-15361-7_2
  35. Montesano C, Vannutelli G, Gregori A et al (2016) Broad screening and identification of novel psychoactive substances in plasma by high-performance liquid chromatography-high-resolution mass spectrometry and post-run library matching. J Anal Toxicol 40(7):519–528.  https://doi.org/10.1093/jat/bkw043CrossRefPubMedGoogle Scholar
  36. Montesano C, Vannutelli G, Piccirilli V et al (2017) Application of a rapid μ-SPE clean-up for multiclass quantitative analysis of sixteen new psychoactive substances in whole blood by LC-MS/MS. Talanta 167:260–267.  https://doi.org/10.1016/j.talanta.2017.02.019CrossRefPubMedGoogle Scholar
  37. Musah RA, Cody RB, Domin MA et al (2014) DART-MS in-source collision induced dissociation and high mass accuracy for new psychoactive substance determinations. Forensic Sci Int 244:42–49.  https://doi.org/10.1016/j.forsciint.2014.07.028CrossRefPubMedGoogle Scholar
  38. Namera A, Kawamura M, Nakamoto A et al (2015) Comprehensive review of the detection methods for synthetic cannabinoids and cathinones. Forensic Toxicol 33(2):175–194.  https://doi.org/10.1007/s11419-015-0270-0CrossRefPubMedPubMedCentralGoogle Scholar
  39. Neifeld JR, Regester LE, Holler JM et al (2016) Ultrafast screening of synthetic cannabinoids and synthetic cathinones in urine by RapidFire-Tandem Mass Spectrometry. J Anal Toxicol 40(5):379–837.  https://doi.org/10.1093/jat/bkw025CrossRefPubMedGoogle Scholar
  40. Nie H, Li X, Hua Z et al (2016) Rapid screening and determination of 11 new psychoactive substances by direct analysis in real time mass spectrometry and liquid chromatography/quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 30(S1):141–146.  https://doi.org/10.1002/rcm.7629CrossRefPubMedGoogle Scholar
  41. Odoardi S, Fisichella M, Romolo FS et al (2015) High-throughput screening for new psychoactive substances (NPS) in whole blood by DLLME extraction and UHPLC-MS/MS analysis. J Chromatogr B Analyt Technol Biomed Life Sci 1000:57–68.  https://doi.org/10.1016/j.jchromb.2015.07.007CrossRefPubMedGoogle Scholar
  42. Ojanpera IA, Heikman PK, Rasanen IJ (2011) Urine analysis of 3,4-methylenedioxypyrovalerone in opioid-dependent patients by gas chromatography–mass spectrometry. Ther Drug Monit 33(2):257–263.  https://doi.org/10.1097/FTD.0b013e318208b693CrossRefPubMedGoogle Scholar
  43. Paul M, Ippisch J, Herrmann C et al (2014) Analysis of new designer drugs and common drugs of abuse in urine by a combined targeted and untargeted LC-HR-QTOFMS approach. Anal Bioanal Chem 406(18):4425–4441.  https://doi.org/10.1007/s00216-014-7825-5CrossRefPubMedGoogle Scholar
  44. Pederson CG, Friedrich DM, Hsiung C et al (2014) Pocket-size near-infrared spectrometer for narcotic materials identification. In: Proceedings of SPIE—the international society for optical engineering, 9101, Art. no. 91010O.  https://doi.org/10.1117/12.2050019
  45. Philp M, Shimmon R, Tahtouh M et al (2016) Development and validation of a presumptive colour spot test method for the detection of synthetic cathinones in seized illicit materials. Forensic Chem 1:39–50.  https://doi.org/10.1016/j.forc.2016.06.001CrossRefGoogle Scholar
  46. Qian Z, Jia W, Li T et al (2017) Identification of five pyrrolidinyl substituted cathinones and the collision-induced dissociation of electrospray-generated pyrrolidinyl substituted cathinones. Drug Test Anal 9(5):778–787.  https://doi.org/10.1002/dta.2035CrossRefPubMedGoogle Scholar
  47. Randox Toxicology—ELISA https://www.randoxtoxicology.com/products/elisa. Accessed 4 Oct 2017
  48. Regester LE, Chmiel JD, Holler JM et al (2015) Determination of designer drug cross-reactivity on five commercial immunoassay screening kits. J Anal Toxicol 39(2):144–151.  https://doi.org/10.1093/jat/bku133CrossRefPubMedGoogle Scholar
  49. Roda E, Lonati D, Buscaglia E et al (2016) Evaluation of two different screening ELISA assays for synthetic cathinones (mephedrone/methcathinone and MDPV) with LC-MS method in intoxicated patients. J Clin Toxicol 6:3.  https://doi.org/10.4172/2161-0495.1000302CrossRefGoogle Scholar
  50. Rosner P (2017) Mass spectra of designer drugs 2017. Wiley VCH, WeinheimGoogle Scholar
  51. Rowe WF, Marginean I, Carnes S et al (2017) The role of diode array ultraviolet detection for the identification of synthetic cathinones. Drug Test Anal.  https://doi.org/10.1002/dta.2163CrossRefPubMedGoogle Scholar
  52. Saito T, Namera A, Osawa M et al (2013) SPME–GC–MS analysis of a-pyrrolidinovaleorophenone in blood in a fatal poisoning case. Forensic Toxicol 31(2):328–332.  https://doi.org/10.1007/s11419-013-0183-8CrossRefGoogle Scholar
  53. Salomone A, Gazzilli G, Di Corcia D et al (2016) Determination of cathinones and other stimulant, psychedelic, and dissociative designer drugs in real hair samples. Anal Bioanal Chem 408(8):2035–2042.  https://doi.org/10.1007/s00216-015-9247-4CrossRefPubMedGoogle Scholar
  54. Sørensen LK (2011) Determination of cathinones and related ephedrines in forensic whole-blood samples by liquid-chromatography-electrospray tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 879(11–12):727–736.  https://doi.org/10.1016/j.jchromb.2011.02.010CrossRefPubMedGoogle Scholar
  55. Stojanovska N, Tahtouh M, Kelly T et al (2014) Presumptive analysis of 4-methylmethcathinone (mephedrone) using Desorption electrospray ionisation—mass spectrometry (DESI-MS). Aust J Forensic Sci 46(4):411–423.  https://doi.org/10.1080/00450618.2013.879206CrossRefGoogle Scholar
  56. Strano-Rossi S, Cadwallader AB, de la Torre X et al (2010) Toxicological determination and in vitro metabolism of the designer drug methylenedioxypyrovalerone (MDPV) by gas chromatography/mass spectrometry and liquid chromatography/quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 24:2706–2714.  https://doi.org/10.1002/rcm.4692CrossRefPubMedGoogle Scholar
  57. Swortwood MJ, Boland DM, DeCaprio AP (2013) Determination of 32 cathinone derivatives and other designer drugs in serum by comprehensive LC-QQQ-MS/MS analysis. Anal Bioanal Chem 405:1383–1397.  https://doi.org/10.1007/s00216-012-6548-8CrossRefPubMedGoogle Scholar
  58. Swortwood MJ, Hearn WL, DeCaprio AP (2014) Cross-reactivity of designer drugs, including cathinone derivatives, in commercial enzyme-linked immunosorbent assays. Drug Test Anal 6(7–8):716–727.  https://doi.org/10.1002/dta.1489CrossRefPubMedGoogle Scholar
  59. Synthetic Cathinones (Methcathinone) ELISA Kit. http://www.neogeneurope.com/Toxicology/pdf/ProdInfo/SyntheticCathinones.pdf. Accessed 4 Oct 2017
  60. Tang MHY, Ching CK, Lee CYW et al (2014) Simultaneous detection of 93 conventional and emerging drugs of abuse and their metabolites in urine by UHPLC-MS/MS. J Chromatogr B 969:272–284.  https://doi.org/10.1016/j.jchromb.2014.08.033CrossRefGoogle Scholar
  61. Toole KE, Fu S, Shimmon RG et al (2012) Color tests for the preliminary identification of methcathinone and analogues of methcathinone. Microgram J 9(1):27–32Google Scholar
  62. Uralets V, Rana S, Morgan S et al (2014) Testing for designer stimulants: metabolic profiles of 16 synthetic cathinones excreted free in human urine. J Anal Toxicol 38(5):233–241.  https://doi.org/10.1093/jat/bku021CrossRefPubMedGoogle Scholar
  63. Vaiano F, Busardò FP, Palumbo D et al (2016) A novel screening method for 64 new psychoactive substances and 5 amphetamines in blood by LC-MS/MS and application to real cases. J Pharm Biomed Anal 129:441–449.  https://doi.org/10.1016/j.jpba.2016.07.009CrossRefPubMedGoogle Scholar
  64. Westphal F, Junge T, Rosner P et al (2009) Mass and NMR spectroscopic characterization of 3,4-methylenedioxypyrovalerone: a designer drug with α-pyrrolidinophenone structure. Forensic Sci Int 190(1-3):1–8.  https://doi.org/10.1016/j.forsciint.2009.05.001CrossRefPubMedGoogle Scholar
  65. Wiergowski M, Woźniak MK, Kata M et al (2016) Determination of MDPBP in postmortem blood samples by gas chromatography coupled with mass spectrometry. Monatsh Chem 47:1415–1421.  https://doi.org/10.1007/s00706-016-1780-0CrossRefGoogle Scholar
  66. Zuba D (2012) Identification of cathinones and other active components of ‘legal highs’ by mass spectrometric methods. TrAC Trend Anal Chem 32:15–30.  https://doi.org/10.1016/j.trac.2011.09.009CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Forensic ResearchKrakówPoland

Personalised recommendations