Skip to main content

A Scaled-Correlation Based Approach for Defining and Analyzing Functional Networks

  • Conference paper
  • First Online:
New Frontiers in Mining Complex Patterns (NFMCP 2017)

Abstract

Many natural systems can be described as networks of interacting elements, forming a graph of interactions. This is the case for climate models, coupled chemical systems, computer or social networks, or the brain. For many of these cases, dynamical networks emerge whose structure changes in time. Estimating the structure of such networks from the time series that describe the activity of their nodes is a serious challenge. Here, we devise a new method that is based on the Scaled Correlation function to estimate interactions between nodes that occur on fast timescales. We apply the method on EEG measurements from human volunteers to evaluate neuronal functional connectivity associated with a visual perception task. We compare the statistics of networks extracted with the new method with those that are extracted using traditional techniques, like the Pearson correlation coefficient or the cross-correlation function. Results indicate that the new method is superior in identifying networks whose structure correlates to the cognitive processes engaged during visual perception. The method is general enough to be applied on any data that describes dynamical interactions evolving on multiple timescales, as is the case in climate modeling, chemical networks, or complex biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barabasi, A.L.: Network Science. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  2. Koniaris, M., Anagnostopoulos, I., Vassiliou, Y.: Network analysis in the legal domain: a complex model for European Union legal sources, CoRR (2015)

    Google Scholar 

  3. Baggio, R., Scott, N., Cooper, C.: Network science: a review focused on tourism. Ann. Tour. Res. 37, 802–827 (2010)

    Article  Google Scholar 

  4. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(4), 312 (2009)

    Article  Google Scholar 

  5. Lange, S., Donges, J.F., Volkholz, J., Kurths, J.: Local difference measures between complex networks for dynamical system model evaluation. PLoS ONE 10(4), e0129413 (2015)

    Article  Google Scholar 

  6. Pearson, K.: Notes on regression and inheritance in the case of two parents. Proc. Royal Soc. Lond. 58, 240–242 (1895)

    Article  Google Scholar 

  7. Bracewell, R.: Pentagram notation for cross correlation. In: The Fourier Transform and Its Applications, pp. 46 and 243. McGraw-Hill, New York (1965)

    Google Scholar 

  8. Nikolić, D., Mureşan, R.C., Feng, W., Singer, W.: Scaled correlation analysis: a better way to compute a cross-correlogram. Eur. J. Neurosci. 35(5), 742–762 (2012)

    Article  Google Scholar 

  9. Friston, K.J.: Functional and effective connectivity: a review. Brain Connect. 1(1), 13–36 (2011)

    Article  MathSciNet  Google Scholar 

  10. Park, H.J., Friston, K.: Structural and functional brain networks: from connections to cognition. Science 342(6158), 1238411 (2013)

    Article  Google Scholar 

  11. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52(3), 1059–1069 (2010). Computational Models of the Brain

    Article  Google Scholar 

  12. Finc, K., Bonna, K., Lewandowska, M., Wolak, T., Nikadon, J., Dreszer, J., Duch, W., Khn, S.: Transition of the functional brain network related to increasing cognitive demands. Hum. Brain Mapp. 38, 3659–3674 (2017)

    Google Scholar 

  13. Joudaki, A., Salehi, N., Jalili, M., Knyazeva, M.G.: EEG based functional brain networks: does the network size matter? PLoS ONE 7(4), 1–9 (2012)

    Article  Google Scholar 

  14. Jalili, M., Knyazeva, M.G.: Constructing brain functional networks from EEG: partial and unpartial correlations. J. Integr. Neurosci. 10(2), 213–232 (2011)

    Article  Google Scholar 

  15. Meador, K.J., Ray, P.G.: Gamma frequency coherence and conscious perception. J. Clin. Neurophysiol. 16(2), 170 (1999)

    Article  Google Scholar 

  16. Bordier, C., Nicolini, C., Bifone, A.: Graph analysis and modularity of brain functional connectivity networks: searching for the optimal threshold. Front. Neurosci. 11, 441 (2017)

    Article  Google Scholar 

  17. Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: generalizing degree and shortest paths. Soc. Netw. 32(3), 245–251 (2010)

    Article  Google Scholar 

  18. Reppas, A.I., Spiliotis, K., Siettos, C.I.: Tuning the average path length of complex networks and its influence to the emergent dynamics of the majority-rule model. Math. Comput. Simul. 109, 186–196 (2015)

    Article  MathSciNet  Google Scholar 

  19. Opsahl, T., Panzarasa, P.: Clustering in weighted networks. Soci. Netw. 31(2), 155–163 (2009)

    Article  Google Scholar 

  20. Moca, V.V., Ţincaş, I., Melloni, L., Mureşan, R.C.: Visual exploration and object recognition by lattice deformation. PLoS ONE 6(7), e22831 (2011)

    Article  Google Scholar 

  21. Singer, W.: Neuronal synchrony: a versatile code for the definition of relations? Neuron 24(1), 49–65 (1999)

    Article  MathSciNet  Google Scholar 

  22. Fries, P., Nikolić, D., Singer, W.: The gamma cycle. Trends Neurosci. 30(7), 309–316 (2007)

    Article  Google Scholar 

  23. Stam, C.J.: Modern network science of neurological disorders. Nat. Rev. Neurosci. 15, 683–695 (2014)

    Article  Google Scholar 

  24. Jarosiewicz, B., Chase, S.M., Fraser, G.W., Velliste, M., Kass, R.E., Schwartz, A.B.: Functional network reorganization during learning in a brain-computer interface paradigm. Proc. Natl. Acad. Sci. U.S.A. 105(49), 19486–19491 (2008)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by two grants from Consiliul National al Cercetării Ştiinţifice (CNCS) - Unitatea Executivă pentru Finanţarea Învăţământului Superior, a Cercetării Dezvoltării şi Inovării (UEFISCDI): PNII-RU-TE-2014-4- 13 0406/2015 contract no. 169/2015 and PN-III-P4-ID-PCE-2016-0010 contract no. 78/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Dînşoreanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dolean, S., Dînşoreanu, M., Mureşan, R.C., Geiszt, A., Potolea, R., Ţincaş, I. (2018). A Scaled-Correlation Based Approach for Defining and Analyzing Functional Networks. In: Appice, A., Loglisci, C., Manco, G., Masciari, E., Ras, Z. (eds) New Frontiers in Mining Complex Patterns. NFMCP 2017. Lecture Notes in Computer Science(), vol 10785. Springer, Cham. https://doi.org/10.1007/978-3-319-78680-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78680-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78679-7

  • Online ISBN: 978-3-319-78680-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics