Understanding Embodied Cognition by Building Models of Minimal Life

Preparatory Steps and a Preliminary Autopoietic Framework
  • Luisa Damiano
  • Pasquale Stano
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 830)


A novel scenario is emerging from the synthetic biology advancements of the last fifteen years. We refer to a well-defined multidisciplinary sci-tech arena dedicated to the construction of biological-like systems, and, in particular, microscopic cell-like systems. The challenge of assembling a minimal cell from separated parts is generally considered the Holy Grail of biology. However, an accurate analysis of this emerging line of research, grounded in the theory of autopoiesis and its implications, is able to show its potentially high relevance for two other fields – artificial life and artificial intelligence. In this paper we intend to propose this perspective. Based on the critical discussion of recent trends and experimental results in synthetic biology, we sketch out how current research in this field can impact not only artificial life, but also artificial intelligence inquiries, in particular with respect to embodied cognition.



The authors thank Pier Luigi Luisi (Roma Tre University and ETH Zürich) for inspiring discussions. This work has been stimulated by our involvement in the European COST Action CM-1304 “Emergence and Evolution of Complex Chemical Systems” and TD-1308 “Origins and evolution of life on Earth and in the Universe (ORIGINS)”.


  1. 1.
    Adamala, K.P., Martin-Alarcon, D.A., Guthrie-Honea, K.R., Boyden, E.S.: Engineering genetic circuit interactions within and between synthetic minimal cells. Nat. Chem. 9(5), 431–439 (2017)CrossRefGoogle Scholar
  2. 2.
    Bachmann, P.A., Walde, P., Luisi, P.L., Lang, J.: Self-replicating reverse micelles and chemical autopoiesis. J. Am. Chem. Soc. 112(22), 8200–8201 (1990)CrossRefGoogle Scholar
  3. 3.
    Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nature 429(6990), 423–429 (2004)CrossRefGoogle Scholar
  4. 4.
    Bich, L., Damiano, L.: Life, autonomy and cognition: an organizational approach to the definition of the universal properties of life. Orig. Life Evol. Biosph. 42, 389–397 (2012)CrossRefGoogle Scholar
  5. 5.
    Blain, J.C., Szostak, J.W.: Progress toward synthetic cells. Annu. Rev. Biochem. 83(1), 615–640 (2014)CrossRefGoogle Scholar
  6. 6.
    Bracciali, A., Cataldo, E., Damiano, L., Felicioli, C., Marangoni, R., Stano, P.: From cells as computation to cells as apps. In: Gadducci, F., Tavosanis, M. (eds.) HaPoC 2015. IAICT, vol. 487, pp. 116–130. Springer, Cham (2016). Scholar
  7. 7.
    Cordeschi, R.: The Discovery of the Artificial. Springer, Heidelberg (2002). Scholar
  8. 8.
    Cronin, L., Krasnogor, N., Davis, B.G., Alexander, C., Robertson, N., Steinke, J.H.G., Schroeder, S.L.M., Khlobystov, A.N., Cooper, G., Gardner, P.M., Siepmann, P., Whitaker, B.J., Marsh, D.: The imitation game–a computational chemical approach to recognizing life. Nat. Biotechnol. 24(10), 1203–1206 (2006)CrossRefGoogle Scholar
  9. 9.
    Damiano, L., Hiolle, A., Cañamero, L.: Grounding synthetic knowledge. In: Lenaerts, T., Giacobini, M., Bersini, H., Bourgine, P., Dorigo, M., Doursat, R. (eds.) Advances in Artificial Life, ECAL 2011, pp. 200–207. MIT Press, Cambridge (2011)Google Scholar
  10. 10.
    Damiano, L.: Co-emergences in life and science: a double proposal for biological emergentism. Synthese 185(2), 273–294 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Damiano, L., Kuruma, Y., Stano, P.: What can synthetic biology offer to artificial intelligence (and vice versa)? Biosystems 148, 1–3 (2016)CrossRefGoogle Scholar
  12. 12.
    Dreyfus, H.L.: What Computers Can’t Do: The Limits of Artificial Intelligence. Harper and Row, New York (1979). Revised editionGoogle Scholar
  13. 13.
    Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403(6767), 335–338 (2000)CrossRefGoogle Scholar
  14. 14.
    Endy, D.: Foundations for engineering biology. Nature 438, 449–453 (2005)CrossRefGoogle Scholar
  15. 15.
    Froese, T., Ziemke, T.: Enactive artificial intelligence: investigating the systemic organization of life and mind. Artif. Intell. 173(3), 466–500 (2009)CrossRefGoogle Scholar
  16. 16.
    Gardner, P.M., Winzer, K., Davis, B.G.: Sugar synthesis in a protocellular model leads to a cell signalling response in bacteria. Nat. Chem. 1(5), 377–383 (2009)CrossRefGoogle Scholar
  17. 17.
    Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767), 339–341 (2000)CrossRefGoogle Scholar
  18. 18.
    Harnad, S.: The symbol grounding problem. Physica D 42, 335–346 (1990)CrossRefGoogle Scholar
  19. 19.
    Hoffmann, P.M.: Life’s Ratchet: How Molecular Machines Extract Order from Chaos, 1st edn. Basic Books. A Member of the Perseus Books Group, New York (2012)Google Scholar
  20. 20.
    Ichihashi, N., Matsuura, T., Kita, H., Sunami, T., Suzuki, H., Yomo, T.: Constructing partial models of cells. Cold Spring Harb. Perspect. Biol. 2(6), a004945 (2010)CrossRefGoogle Scholar
  21. 21.
    Kaneko, K.: Life: An Introduction to Complex Systems Biology. Understanding Complex Systems. Springer, Heidelberg (2006). Scholar
  22. 22.
    Langton, C.G.: Artificial life. In: Boden, M.A. (ed.) The Philosophy of Artifcial Life, pp. 39–94. Oxford University Press, Oxford (1996)Google Scholar
  23. 23.
    LeDuc, P.R., Wong, M.S., Ferreira, P.M., Groff, R.E., Haslinger, K., Koonce, M.P., Lee, W.Y., Love, J.C., McCammon, J.A., Monteiro-Riviere, N.A., Rotello, V.M., Rubloff, G.W., Westervelt, R., Yoda, M.: Towards an in vivo biologically inspired nanofactory. Nat. Nanotechnol. 2, 3–7 (2007)CrossRefGoogle Scholar
  24. 24.
    Lentini, R., Martín, N.Y., Forlin, M., Belmonte, L., Fontana, J., Cornella, M., Martini, L., Tamburini, S., Bentley, W.E., Jousson, O., Mansy, S.S.: Two-way chemical communication between artificial and natural cells. ACS Cent. Sci. 3(2), 117–123 (2017)CrossRefGoogle Scholar
  25. 25.
    Lentini, R., Santero, S.P., Chizzolini, F., Cecchi, D., Fontana, J., Marchioretto, M., Del Bianco, C., Terrell, J.L., Spencer, A.C., Martini, L., Forlin, M., Assfalg, M., DallaSerra, M., Bentley, W.E., Mansy, S.S.: Integrating artificial with natural cells to translate chemical messages that direct E. coli behaviour. Nat. Commun. 5, 4012 (2014)CrossRefGoogle Scholar
  26. 26.
    de Lorenzo, V., Danchin, A.: Synthetic biology: discovering new worlds and new words. EMBO Rep. 9(9), 822–827 (2008)CrossRefGoogle Scholar
  27. 27.
    Luisi, P.L., Ferri, F., Stano, P.: Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften 93, 1–13 (2006)CrossRefGoogle Scholar
  28. 28.
    Luisi, P.L., Walde, P., Oberholzer, T.: Lipid vesicles as possible intermediates in the origin of life. Curr. Opin. Colloid Interface Sci. 4(1), 33–39 (1999)CrossRefGoogle Scholar
  29. 29.
    Luisi, P.L.: Autopoiesis: a review and a reappraisal. Naturwissenschaften 90(2), 49–59 (2003)Google Scholar
  30. 30.
    Luisi, P.L.: The synthetic approach in biology: epistemological notes for synthetic biology. In: Luisi, P.L., Chiarabelli, C. (eds.) Chemical Synthetic Biology, pp. 343–362. Wiley, Chichester (2011)Google Scholar
  31. 31.
    Luisi, P., Varela, F.: Self-replicating micelles - a chemical version of a minimal autopoietic system. Orig. Life Evol. Biosph. 19, 633–643 (1989)CrossRefGoogle Scholar
  32. 32.
    Maturana, H.R., Varela, F.J.: Autopoiesis and Cognition: The Realization of the Living, 1st edn. D. Reidel Publishing Company, Dordrecht (1980)CrossRefGoogle Scholar
  33. 33.
    Maturana, H.R., Varela, F.J.: De máquinas y seres vivos: Una teoría de la organizacíon Biológica. Editorial Universitaria, Santiago (1972)Google Scholar
  34. 34.
    Mavelli, F., Rampioni, G., Damiano, L., Messina, M., Leoni, L., Stano, P.: Molecular communication technology: general considerations on the use of synthetic cells and some hints from in silico modelling. In: Pizzuti, C., Spezzano, G. (eds.) WIVACE 2014. CCIS, vol. 445, pp. 169–189. Springer, Cham (2014). Scholar
  35. 35.
    Morange, M.: A critical perspective on synthetic biology. Hyle 15(1), 21–30 (2009)Google Scholar
  36. 36.
    Nakano, T., Eckford, A.W., Haraguchi, T.: Molecular Communications. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  37. 37.
    Nakano, T., Moore, M., Enomoto, A., Suda, T.: Molecular communication technology as a biological ICT. In: Sawai, H. (ed.) Biological Functions for Information and Communication Technologies. Studies in Computational Intelligence, vol. 320, pp. 49–86. Springer, Heidelberg (2011). Scholar
  38. 38.
    O’Malley, M.A.: Making knowledge in synthetic biology: design meets kludge. Biol. Theory 4(4), 378–389 (2009)CrossRefGoogle Scholar
  39. 39.
    Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)Google Scholar
  40. 40.
    Rampioni, G., D’Angelo, F., Messina, M., Zennaro, A., Kuruma, Y., Tofani, D., Leoni, L., Stano, P.: Synthetic cells produce a quorum sensing chemical signal perceived by Pseudomonas aeruginosa. Chem. Commun. 54(17), 2090–2093 (2018)CrossRefGoogle Scholar
  41. 41.
    Rampioni, G., Mavelli, F., Damiano, L., D’Angelo, F., Messina, M., Leoni, L., Stano, P.: A synthetic biology approach to bio-chem-ICT: first moves towards chemical communication between synthetic and natural cells. Nat. Comput. 13, 1–17 (2014)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Rosenblueth, A., Wiener, N., Bigelow, J.: Behavior, purpose and teleology. Philos. Sci. 10, 18–24 (1943)CrossRefGoogle Scholar
  43. 43.
    Searle, J.: Minds, brains, and programmes. Behav. Brain Sci. 3, 417–424 (1980)CrossRefGoogle Scholar
  44. 44.
    Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., Ueda, T.: Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19(8), 751–755 (2001)CrossRefGoogle Scholar
  45. 45.
    Stano, P., Kuruma, Y., Damiano, L.: Synthetic biology and (embodied) artificial intelligence: opportunities and challenges. Adapt. Behavior 26(1), 41–44 (2018)CrossRefGoogle Scholar
  46. 46.
    Stano, P.: The birth of liposome-based synthetic biology: a brief account. In: Pearson, B.R. (ed.) Liposomes: Historical, Clinical and Molecular Perspectives, pp. 37–52. Nova Science Publishers, Inc. (2017)Google Scholar
  47. 47.
    Stano, P., Carrara, P., Kuruma, Y., de Souza, T.P., Luisi, P.L.: Compartmentalized reactions as a case of soft-matter biotechnology: synthesis of proteins and nucleic acids inside lipid vesicles. J. Mater. Chem. 21, 18887–18902 (2011)CrossRefGoogle Scholar
  48. 48.
    Stano, P., Mavelli, F.: Protocells models in origin of life and synthetic biology. Life 5(4), 1700–1702 (2015)CrossRefGoogle Scholar
  49. 49.
    Stano, P., Rampioni, G., Carrara, P., Damiano, L., Leoni, L., Luisi, P.L.: Semi-synthetic minimal cells as a tool for biochemical ICT. Bio Syst. 109(1), 24–34 (2012)Google Scholar
  50. 50.
    Tang, T.Y.D., Cecchi, D., Fracasso, G., Accardi, D., Coutable-Pennarun, A., Mansy, S.S., Perriman, A.W., Anderson, J.L.R., Mann, S.: Gene-mediated chemical communication in synthetic protocell communities. ACS Synth. Biol. 7(2), 339–346 (2018)CrossRefGoogle Scholar
  51. 51.
    Varela, F.J., Thompson, E.T., Rosch, E.: The Embodied Mind: Cognitive Science and Human Experience. The MIT Press, Cambridge (1992). New editionGoogle Scholar
  52. 52.
    Walde, P., Wick, R., Fresta, M., Mangone, A., Luisi, P.: Autopoietic self-reproduction of fatty-acid vesicles. J. Am. Chem. Soc. 116, 11649–11654 (1994)CrossRefGoogle Scholar
  53. 53.
    Ziemke, T.: The body of knowledge: on the role of the living body in grounding embodied cognition. Biosystems 148(Suppl. C), 4–11 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Epistemology of the Sciences of the Artificial Research Group (ESARG), Department of Ancient and Modern CivilizationsUniversity of MessinaMessinaItaly
  2. 2.Department of Biological and Environmental Sciences and Technologies (DiSTeBA)University of SalentoLecceItaly

Personalised recommendations