Skip to main content

Stochastic Numerical Models of Oscillatory Phenomena

  • Conference paper
  • First Online:
Artificial Life and Evolutionary Computation (WIVACE 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 830))

Included in the following conference series:

  • 470 Accesses

Abstract

The use of time series for integrating ordinary differential equations to model oscillatory chemical phenomena has shown benefits in terms of accuracy and stability. In this work, we suggest to adapt also the model in order to improve the matching of the numerical solution with the time series of experimental data. The resulting model is a system of stochastic differential equations. The stochastic nature depends on physical considerations and the noise relies on an arbitrary function which is empirically chosen. The integration is carried out through stochastic methods which integrate the deterministic part by using one-step methods and approximate the stochastic term by employing Monte Carlo simulations. Some numerical experiments will be provided to show the effectiveness of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tyson, J.J.: What everyone should know about the Belousov-Zhabotinsky reaction. In: Levin, S.A. (ed.) Frontiers in Mathematical Biology. LNMB, vol. 100, pp. 569–587. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-642-50124-1_33

    Chapter  Google Scholar 

  2. Epstein, I.R., Pojman, J.A.: An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos, 1st edn. Oxford University Press, Oxford (1998)

    Google Scholar 

  3. Murray, J.D.: Mathematical Biology. Springer, New York (2004)

    Book  MATH  Google Scholar 

  4. D’Ambrosio, R., Moccaldi, M., Paternoster, B., Rossi, F.: On the employ of time series in the numerical treatment of differential equations modeling oscillatory phenomena. In: Rossi, F., Piotto, S., Concilio, S. (eds.) WIVACE 2016. CCIS, vol. 708, pp. 179–187. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57711-1_16

    Google Scholar 

  5. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  6. Gillespie, D.T., Hellander, A., Petzold, L.R.: Perspective: stochastic algorithms for chemical kinetics. J. Chem. Phys. 138, 170901 (2013)

    Article  Google Scholar 

  7. Rossi, F., Budroni, M.A., Marchettini, N., Cutietta, L., Rustici, M., Liveri, M.L.T.: Chaotic dynamics in an unstirred ferroin catalyzed Belousov-Zhabotinsky reaction. Chem. Phys. Lett. 480(4), 322–326 (2009)

    Article  Google Scholar 

  8. Belousov, B.P.: An oscillating reaction and its mechanism. Sborn. Referat. Radiat. Med. (Collection of Abstracts on Radiation Medicine), Medgiz 145 (1959)

    Google Scholar 

  9. Field, R.J., Burger, M.: Oscillations and Traveling Waves in Chemical Systems. Wiley-Interscience, New York (1985)

    Google Scholar 

  10. Zhabotinsky, A.M.: Periodic processes of the oxidation of malonic acid in solution (study of the kinetics of Belousov’s reaction). Biofizika 9, 306–311 (1964)

    Google Scholar 

  11. Zhabotinsky, A.M., Rossi, F.: A brief tale on how chemical oscillations became popular an interview with Anatol Zhabotinsky. Int. J. Des. Nat. Ecodyn. 1(4), 323–326 (2006)

    Article  Google Scholar 

  12. Sciascia, L., Rossi, F., Sbriziolo, C., Liveri, M.L.T., Varsalona, R.: Oscillatory dynamics of the Belousov-Zhabotinsky system in the presence of a self-assembling nonionic polymer. Role of the reactants concentration. Phys. Chem. Chem. Phys. 12(37), 11674–11682 (2010)

    Article  Google Scholar 

  13. Marchettini, N., Budroni, M.A., Rossi, F., Masia, M., Liveri, M.L.T., Rustici, M.: Role of the reagents consumption in the chaotic dynamics of the Belousov-Zhabotinsky oscillator in closed unstirred reactors. Phys. Chem. Chem. Phys. 12(36), 11062–11069 (2010)

    Article  Google Scholar 

  14. Rossi, F., Budroni, M.A., Marchettini, N., Carballido-Landeira, J.: Segmented waves in a reaction-diffusion-convection system. Chaos Interdisc. J. Nonlinear Sci. 22(3), 037109 (2012)

    Article  MathSciNet  Google Scholar 

  15. Budroni, M.A., Rossi, F.: A novel mechanism for in situ nucleation of spirals controlled by the interplay between phase fronts and reaction-diffusion waves in an oscillatory medium. J. Phys. Chem. C 119(17), 9411–9417 (2015)

    Article  Google Scholar 

  16. Rossi, F., Ristori, S., Rustici, M., Marchettini, N., Tiezzi, E.: Dynamics of pattern formation in biomimetic systems. J. Theor. Biol. 255(4), 404–412 (2008)

    Article  MathSciNet  Google Scholar 

  17. Taylor, A.F.: Mechanism and phenomenology of an oscillating chemical reaction. Prog. React. Kinet. Mech. 27(4), 247–325 (2002)

    Article  Google Scholar 

  18. Souza, T.P., Perez-Mercader, J.: Entrapment in giant polymersomes of an inorganic oscillatory chemical reaction and resulting chemo-mechanical coupling. Chem. Commun. 50(64), 8970–8973 (2014)

    Article  Google Scholar 

  19. Tamate, R., Ueki, T., Shibayama, M., Yoshida, R.: Self-oscillating vesicles: spontaneous cyclic structural changes of synthetic diblock copolymers. Angew. Chem. Int. Ed. 53(42), 11248–11252 (2014)

    Article  Google Scholar 

  20. Epstein, I.R., Xu, B.: Reaction-diffusion processes at the nano- and microscales. Nat. Nanotechnol. 11(4), 312–319 (2016)

    Article  Google Scholar 

  21. Torbensen, K., Rossi, F., Pantani, O.L., Ristori, S., Abou-Hassan, A.: Interaction of the Belousov-Zhabotinsky reaction with phospholipid engineered membranes. J. Phys. Chem. B 119(32), 10224–10230 (2015)

    Article  Google Scholar 

  22. Torbensen, K., Rossi, F., Ristori, S., Abou-Hassan, A.: Chemical communication and dynamics of droplet emulsions in networks of Belousov-Zhabotinsky micro-oscillators produced by microfluidics. Lab Chip 17(7), 1179–1189 (2017)

    Article  Google Scholar 

  23. Torbensen, K., Ristori, S., Rossi, F., Abou-Hassan, A.: Tuning the chemical communication of oscillating microdroplets by means of membrane composition. J. Phys. Chem. C 121(24), 13256–13264 (2017)

    Article  Google Scholar 

  24. Field, R.J., Noyes, R.M.: Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys. 60, 1877–1884 (1974)

    Article  Google Scholar 

  25. Field, R.J., Körös, E., Noyes, R.M.: Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in bromate-cerium-malonic acid system. J. Am. Chem. Soc. 94, 8649–8664 (1972)

    Article  Google Scholar 

  26. Tyson, J.J.: A quantitative account of oscillations, bistability, and traveling waves in the Belousov-Zhabotinskii reaction. In: Field, R.J., Burger, M. (eds.) Oscillations and Traveling Waves in Chemical Systems, pp. 93–144. Wiley-Interscience, New York (1985)

    Google Scholar 

  27. Tyson, J.: Scaling and reducing the Field-Körös-Noyes mechanism of the Belousov-Zhabotinskii reaction. J. Phys. Chem. 81(86), 3006–3012 (1982)

    Article  Google Scholar 

  28. Burrage, K., Cardone, A., D’Ambrosio, R., Paternoster, B.: Numerical solution of time fractional diffusion systems. Appl. Numer. Math. 116, 82–94 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cardone, A., D’Ambrosio, R., Paternoster, B.: Exponentially fitted IMEX methods for advection-diffusion problems. J. Comput. Appl. Math. 316, 100–108 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cardone, A., D’Ambrosio, R., Paternoster, B.: High order exponentially fitted methods for Volterra integral equations with periodic solution. Appl. Numer. Math. 114C, 18–29 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. D’Ambrosio, R., Moccaldi, M., Paternoster, B.: Adapted numerical methods for advection-reaction-diffusion problems generating periodic wavefronts. Comput. Math. Appl. 74(5), 1029–1042 (2017)

    Article  MathSciNet  Google Scholar 

  32. D’Ambrosio, R., Paternoster, B.: Numerical solution of reaction-diffusion systems of \(\lambda \) - \(\omega \) type by trigonometrically fitted methods. J. Comput. Appl. Math. 294, 436–445 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ixaru, L.G., Paternoster, B.: A conditionally p-stable fourth-order exponential-fitting method for \(y^{\prime \prime }= f(x, y)\). J. Comput. Appl. Math. 106(1), 87–98 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ixaru, L.G., Berghe, G.V.: Exponential Fitting. Kluwer Academic Publishers, Dordrecht (2004)

    Book  MATH  Google Scholar 

  35. Voorsluijs, V., Kevrekidisc, I.G., De Deckerab, Y.: Nonlinear behavior and fluctuation-induced dynamics in the photosensitive Belousov-Zhabotinsky reaction. Phys. Chem. Chem. Phys. 19, 22528–22537 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele D’Ambrosio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

D’Ambrosio, R., Moccaldi, M., Paternoster, B., Rossi, F. (2018). Stochastic Numerical Models of Oscillatory Phenomena. In: Pelillo, M., Poli, I., Roli, A., Serra, R., Slanzi, D., Villani, M. (eds) Artificial Life and Evolutionary Computation. WIVACE 2017. Communications in Computer and Information Science, vol 830. Springer, Cham. https://doi.org/10.1007/978-3-319-78658-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78658-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78657-5

  • Online ISBN: 978-3-319-78658-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics