Skip to main content

Fragment Based Molecular Dynamics for Drug Design

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 830))

Abstract

Molecular docking is a computationally efficient method used to predict the conformations adopted by the ligand within a target-binding site. A positive aspect of conventional docking is the possibility of easily distributing the calculation on dedicated grid or cluster. The receptor is usually kept rigid, therefore the changes in the binding pocket geometry induced by the ligand is overlooked. Here we present a new docking approach (DynDock) that exploits molecular dynamics to preserve the flexibility of the receptor. To maintain high computational efficiency, DynDock has been developed to be distributed on a grid. The main advantages of this method are the full flexible molecular docking achieved during the simulation and the reduced number of compounds collected.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sliwoski, G., Kothiwale, S., Meiler, J., Lowe, E.W.: Computational methods in drug discovery. Pharmacol. Rev. 66, 334–395 (2014)

    Article  Google Scholar 

  2. Salum, L.B., Polikarpov, I., Andricopulo, A.D.: Structure-based approach for the study of estrogen receptor binding affinity and subtype selectivity. J. Chem. Inf. Model. 48, 2243–2253 (2008)

    Article  Google Scholar 

  3. Ferreira, L.G., Dos Santos, R.N., Oliva, G., Andricopulo, A.D.: Molecular docking and structure-based drug design strategies. Molecules 20, 13384–13421 (2015)

    Article  Google Scholar 

  4. Sessa, L., Biasi, L.D., Concilio, S., Cattaneo, G., De Santis, A., Iannelli, P., Piotto, S.: A new flexible protocol for docking studies. Commun. Comput. Inf. Sci. 587, 117–126 (2016)

    Google Scholar 

  5. Lin, J.-H.: Accommodating protein flexibility for structure-based drug design. Curr. Top. Med. Chem. 11, 171–178 (2011)

    Article  Google Scholar 

  6. Durrant, J.D., McCammon, J.A.: Molecular dynamics simulations and drug discovery. BMC Biol. 9, 71 (2011)

    Article  Google Scholar 

  7. de Ruyck, J., Brysbaert, G., Blossey, R., Lensink, M.F.: Molecular docking as a popular tool in drug design, an in silico travel. Adv. Appl. Bioinf. Chem. AABC 9, 1 (2016)

    Google Scholar 

  8. Geng, C., Narasimhan, S., Rodrigues, J.P., Bonvin, A.M.: Information-driven, ensemble flexible peptide docking using HADDOCK. In: Schueler-Furman, O., London, N. (eds.) Modeling Peptide-Protein Interactions. MMB, vol. 1561, pp. 109–138. Springer, New York (2017). https://doi.org/10.1007/978-1-4939-6798-8_8

    Chapter  Google Scholar 

  9. Sessa, L., Concilio, S., Piotto, S.: Molecular dynamics and morphing protocols for high accuracy molecular docking. In: Piotto, S., Rossi, F., Concilio, S., Reverchon, E., Cattaneo, G. (eds.) Advances in Bionanomaterials. LNB, pp. 85–96. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-62027-5_8

    Chapter  Google Scholar 

  10. James, M.N.G., Sielecki, A.R., Brayer, G.D., Delbaere, L.T.J., Bauer, C.A.: Structures of product and inhibitor complexes of Streptomyces griseus protease A at 1.8 Å resolution: a model for serine protease catalysis. J. Mol. Biol. 144, 43–88 (1980)

    Article  Google Scholar 

  11. Bartholomae, M., Buivydas, A., Viel, J.H., Montalban-Lopez, M., Kuipers, O.P.: Major gene-regulatory mechanisms operating in ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthesis. Mol. Microbiol. 106(2), 186–206 (2017)

    Article  Google Scholar 

  12. Harish, B., Uppuluri, K.B.: Microbial serine protease inhibitors and their therapeutic applications. International J. Biol. Macromol. 107, 1373–1387 (2017)

    Article  Google Scholar 

  13. Piotto, S., Di Biasi, L., Concilio, S., Castiglione, A., Cattaneo, G.: GRIMD: distributed computing for chemists and biologists. Bioinformation 10, 43–47 (2014)

    Article  Google Scholar 

  14. Wagner, J.R., Sorgentini, D.A., Añón, M.C.: Relation between solubility and surface hydrophobicity as an indicator of modifications during preparation processes of commercial and laboratory-prepared soy protein isolates. J. Agric. Food Chem. 48, 3159–3165 (2000)

    Article  Google Scholar 

  15. UniProt Consortium: UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2016)

    Article  Google Scholar 

  16. Lee, J., Cheng, X., Swails, J.M., Yeom, M.S., Eastman, P.K., Lemkul, J.A., Wei, S., Buckner, J., Jeong, J.C., Qi, Y.: CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405–413 (2015)

    Article  Google Scholar 

  17. Krieger, E., Vriend, G.: YASARA view-molecular graphics for all devices-from smartphones to workstations. Bioinformatics 30, 2981–2982 (2014)

    Article  Google Scholar 

  18. Di Biasi, L., Fino, R., Parisi, R., Sessa, L., Cattaneo, G., De Santis, A., Iannelli, P., Piotto, S.: Novel algorithm for efficient distribution of molecular docking calculations. Commun. Comput. Inf. Sci. 587, 65–74 (2016)

    Google Scholar 

  19. Piotto, S., Di Biasi, L., Fino, R., Parisi, R., Sessa, L., Concilio, S.: Yada: a novel tool for molecular docking calculations. J. Comput. Aided Mol. Des. 30, 753–759 (2016)

    Article  Google Scholar 

  20. Berezin, C., Glaser, F., Rosenberg, J., Paz, I., Pupko, T., Fariselli, P., Casadio, R., Ben-Tal, N.: ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics 20, 1322–1324 (2004)

    Article  Google Scholar 

  21. Copeland, R.A., Pompliano, D.L., Meek, T.D.: Drug–target residence time and its implications for lead optimization. Nat. Rev. Drug Discovery 5, 730–739 (2006)

    Article  Google Scholar 

  22. Piotto, S., Sessa, L., Iannelli, P., Concilio, S.: Computational study on human sphingomyelin synthase 1 (hSMS1). Biochim. Biophys. Acta (BBA) Biomembr. 1859, 1517–1525 (2017)

    Article  Google Scholar 

  23. Casas, J., Ibarguren, M., Álvarez, R., Terés, S., Lladó, V., Piotto, S.P., Concilio, S., Busquets, X., López, D.J., Escribá, P.V.: G protein-membrane interactions II: effect of G protein-linked lipids on membrane structure and G protein-membrane interactions. Biochim. Biophys. Acta (BBA) Biomembr. 1859, 1526–1535 (2017)

    Article  Google Scholar 

  24. Piotto, S., Trapani, A., Bianchino, E., Ibarguren, M., López, D.J., Busquets, X., Concilio, S.: The effect of hydroxylated fatty acid-containing phospholipids in the remodeling of lipid membranes. Biochim. Biophys. Acta (BBA) Biomembr. 1838, 1509–1517 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Sessa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sessa, L., Di Biasi, L., Concilio, S., Piotto, S. (2018). Fragment Based Molecular Dynamics for Drug Design. In: Pelillo, M., Poli, I., Roli, A., Serra, R., Slanzi, D., Villani, M. (eds) Artificial Life and Evolutionary Computation. WIVACE 2017. Communications in Computer and Information Science, vol 830. Springer, Cham. https://doi.org/10.1007/978-3-319-78658-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78658-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78657-5

  • Online ISBN: 978-3-319-78658-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics