Controlling Chemical Chaos in the Belousov-Zhabotinsky Oscillator
Abstract
Chaos is ubiquitous in Nature and represents one of the most fascinating expressions of real world complexity. Depending on the specific context, the onset of chaotic behaviours can be undesirable, thus, controlling the mechanisms at the basis of chaotic dynamics represents a cutting-edge challenge in many areas, including cardiology, information processing, hydrodynamics and optics, to name a few. In this work we review our recent results showing how, in chemical reactions, the active interplay between a nonlinear kinetics and hydrodynamic instabilities can be exploited as a general mechanism to induce and control chemical chaos. To this end, we consider as a model system the Belousov-Zhabotinsky (BZ) reaction. Thanks to a chemo-hydrodynamic coupling, the reaction can undergo chaotic oscillations when carried out in batch conditions. Chaos appears and disappears by following Ruelle-Takens-Newhouse scenario both in the cerium- and ferroin-catalyzed BZ systems. Here, we present experimental evidence that the transition to chemical chaos can be directly controlled by tuning either kinetic or hydrodynamic parameters of the system. Experiments were simulated by using a reaction-diffusion-convection (RDC) model where the nonlinear reaction kinetics are coupled to the Navier-Stokes equations. Numerical solutions of the RDC model clearly indicate that natural convection can feedback on the spatio-temporal evolution of the concentration fields and, in turn, changes bulk oscillation patterns. Distinct bifurcations in the oscillation patterns are found when the Grashof numbers (governing the entity of convective flows into the system) and the diffusion coefficients of the chemical species are varied. The consumption of the initial reagents is also found to be a critical phenomenon able to modulate the strength of the RDC coupling and drive order-disorder transitions.
Keywords
Chaos control Belousov-Zhabotinsky reaction Chemical chaos Ruelle-Takens-Newhouse transition Reaction-diffusion-convection model Chemo-hydrodynamicsNotes
Acknowledgments
FR gratefully acknowledges the University of Salerno for the grants ORSA158121 and ORSA167988. MAB and MR acknowledge financial support from Fondazione Banco di Sardegna.
References
- 1.Abarbanel, H.D.I.: Analysis of Observed Chaotic Data. Springer, New York (1996). https://doi.org/10.1007/978-1-4612-0763-4CrossRefMATHGoogle Scholar
- 2.Hayashi, K., Gotoda, H., Gentili, P.L.: Probing and exploiting the chaotic dynamics of a hydrodynamic photochemical oscillator to implement all the basic binary logic functions. Chaos Interdisc. J. Nonlinear Sci. 26(5), 053102 (2016)CrossRefGoogle Scholar
- 3.Gentili, P.L., Giubila, M.S., Heron, B.M.: Processing binary and fuzzy logic by chaotic time series generated by a hydrodynamic photochemical oscillator. ChemPhysChem 18(13), 1831–1841 (2017)CrossRefGoogle Scholar
- 4.Boccaletti, S., Grebogi, C., Lai, Y.C., Mancini, H., Maza, D.: The control of chaos: theory and applications. Phys. Rep. 329(3), 103–197 (2000)MathSciNetCrossRefGoogle Scholar
- 5.Scott, S.K.: Chemical Chaos. Oxford University Press, Oxford (1993)Google Scholar
- 6.Belousov, B.P.: A periodic reaction and its mechanism. In: Sbornik Referatov po Radiatsonno Meditsine, Moscow, Medgiz, pp. 145–147 (1958)Google Scholar
- 7.Zhabotinsky, A.M.: Periodic liquid phase reactions. Proc. Acad. Sci. USSR 157, 392–395 (1964)Google Scholar
- 8.Noyes, R.M., Field, R., Koros, E.: Oscillations in chemical systems. I. Detailed mechanism in a system showing temporal oscillations. J. Am. Chem. Soc. 94(4), 1394–1395 (1972)CrossRefGoogle Scholar
- 9.Rustici, M., Branca, M., Caravati, C., Marchettini, N.: Evidence of a chaotic transient in a closed unstirred cerium catalyzed Belousov-Zhabotinsky system. Chem. Phys. Lett. 263(3), 429–434 (1996)CrossRefGoogle Scholar
- 10.Rossi, F., Budroni, M.A., Marchettini, N., Cutietta, L., Rustici, M., Turco Liveri, M.L.: Chaotic dynamics in an unstirred ferroin catalyzed Belousov-Zhabotinsky reaction. Chem. Phys. Lett. 480(4–6), 322–326 (2009)CrossRefGoogle Scholar
- 11.Newhouse, S., Ruelle, D., Takens, F.: Occurrence of strange Axiom \(A\) attractors near quasi periodic flows on T\(^m\), m\(\ge \)3. Commun. Math. Phys. 64(1), 35–40 (1978)CrossRefMATHGoogle Scholar
- 12.De Wit, A., Eckert, K., Kalliadasis, S.: Introduction to the focus issue: chemo-hydrodynamic patterns and instabilities. Chaos Interdisc. J. Nonlinear Sci. 22(3), 037101 (2012)CrossRefGoogle Scholar
- 13.Rossi, F., Turco Liveri, M.L.: Chemical self-organization in self-assembling biomimetic systems. Ecol. Model. 220(16), 1857–1864 (2009)CrossRefGoogle Scholar
- 14.Rossi, F., Budroni, M.A., Marchettini, N., Carballido-Landeira, J.: Segmented waves in a reaction-diffusion-convection system. Chaos Interdisc. J. Nonlinear Sci. 22(3), 037109–037109-11 (2012)MathSciNetCrossRefGoogle Scholar
- 15.Budroni, M.A., De Wit, A.: Dissipative structures: From reaction-diffusion to chemo-hydrodynamic patterns. Chaos Interdisc. J. Nonlinear Sci. 27(10), 104617 (2017)CrossRefGoogle Scholar
- 16.Marchettini, N., Rustici, M.: Effect of medium viscosity in a closed unstirred Belousov-Zhabotinsky system. Chem. Phys. Lett. 317(6), 647–651 (2000)CrossRefGoogle Scholar
- 17.Horvath, D., Budroni, M.A., Baba, P., Rongy, L., De Wit, A., Eckert, K., Hauser, M.J.B., Toth, A.: Convective dynamics of traveling autocatalytic fronts in a modulated gravity field. Phys. Chem. Chem. Phys. 16, 26279–26287 (2014)CrossRefGoogle Scholar
- 18.Turco Liveri, M.L., Lombardo, R., Masia, M., Calvaruso, G., Rustici, M.: Role of the reactor geometry in the onset of transient chaos in an unstirred Belousov-Zhabotinsky system. J. Phys. Chem. A 107(24), 4834–4837 (2003)CrossRefGoogle Scholar
- 19.Budroni, M.A., Rossi, F.: A novel mechanism for in situ nucleation of spirals controlled by the interplay between phase fronts and reaction-diffusion waves in an oscillatory medium. J. Phys. Chem. C 119(17), 9411–9417 (2015)CrossRefGoogle Scholar
- 20.Budroni, M.A., Calabrese, I., Miele, Y., Rustici, M., Marchettini, N., Rossi, F.: Control of chemical chaos through medium viscosity in a batch ferroin-catalysed Belosuov-Zhabotinsky reaction. Phys. Chem. Chem. Phys. 19, 32235–32241 (2017)CrossRefGoogle Scholar
- 21.Rossi, F., Varsalona, R., Turco Liveri, M.L.: New features in the dynamics of a ferroin-catalyzed Belousov-Zhabotinsky reaction induced by a zwitterionic surfactant. Chem. Phys. Lett. 463(4–6), 378–382 (2008)CrossRefGoogle Scholar
- 22.Rossi, F., Lombardo, R., Sciascia, L., Sbriziolo, C., Turco Liveri, M.L.: Spatio-temporal perturbation of the dynamics of the ferroin catalyzed Belousov-Zhabotinsky reaction in a batch reactor caused by sodium dodecyl sulfate micelles. J. Phys. Chem. B 112, 7244–7250 (2008)CrossRefGoogle Scholar
- 23.Strizhak, P.E., Kawczynski, A.L.: Complex transient oscillations in the Belousov-Zhabotinskii reaction in a batch reactor. J. Phys. Chem. 99(27), 10830–10833 (1995)CrossRefGoogle Scholar
- 24.Biosa, G., Masia, M., Marchettini, N., Rustici, M.: A ternary nonequilibrium phase diagram for a closed unstirred Belousov-Zhabotinsky system. Chem. Phys. 308(1), 7–12 (2005)CrossRefGoogle Scholar
- 25.Rossi, F., Pulselli, F., Tiezzi, E., Bastianoni, S., Rustici, M.: Effects of the electrolytes in a closed unstirred Belousov-Zhabotinsky medium. Chem. Phys. 313, 101–106 (2005)CrossRefGoogle Scholar
- 26.Budroni, M.A., Masia, M., Rustici, M., Marchettini, N., Volpert, V., Cresto, P.C.: Ruelle-Takens-Newhouse scenario in reaction-diffusion-convection system. J. Chem. Phys. 128(11), 111102–111104 (2008)CrossRefGoogle Scholar
- 27.Budroni, M.A., Masia, M., Rustici, M., Marchettini, N., Volpert, V.: Bifurcations in spiral tip dynamics induced by natural convection in the Belousov-Zhabotinsky reaction. J. Chem. Phys. 130(2), 024902–8 (2009)CrossRefGoogle Scholar
- 28.Rongy, L., Schuszter, G., Sinkó, Z., Tóth, T., Horváth, D., Tóth, A., De Wit, A.: Influence of thermal effects on buoyancy-driven convection around autocatalytic chemical fronts propagating horizontally. Chaos Interdisc. J. Nonlinear Sci. 19(2), 023110 (2009)CrossRefGoogle Scholar
- 29.Budroni, M.A., Rongy, L., De Wit, A.: Dynamics due to combined buoyancy- and Marangoni-driven convective flows around autocatalytic fronts. Phys. Chem. Chem. Phys. 14, 14619–14629 (2012)CrossRefGoogle Scholar
- 30.Jahnke, W., Skaggs, W.E., Winfree, A.T.: Chemical vortex dynamics in the Belousov-Zhabotinskii reaction and in the two-variable oregonator model. J. Phys. Chem. 93(2), 740–749 (1989)CrossRefGoogle Scholar
- 31.Peaceman, D.W., Rachford, H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3, 28 (1955)MathSciNetCrossRefMATHGoogle Scholar
- 32.Hegger, R., Kantz, H., Schreiber, T.: Practical implementation of nonlinear time series methods: the TISEAN package. Chaos: Interdisc. J. Nonlinear Sci. 9, 413 (1999)CrossRefMATHGoogle Scholar
- 33.Marchettini, N., Budroni, M.A., Rossi, F., Masia, M., Turco Liveri, M.L., Rustici, M.: Role of the reagents consumption in the chaotic dynamics of the Belousov-Zhabotinsky oscillator in closed unstirred reactors. Phys. Chem. Chem. Phys. 12(36), 11062–11069 (2010)CrossRefGoogle Scholar
- 34.Agladze, K.I., Krinsky, V.I., Pertsov, A.M.: Chaos in the non-stirred Belousov-Zhabotinsky reaction is induced by interaction of waves and stationary dissipative structures. Nature 308(5962), 834–835 (1984)CrossRefGoogle Scholar