Searching Relevant Variable Subsets in Complex Systems Using K-Means PSO

  • Gianluigi Silvestri
  • Laura Sani
  • Michele Amoretti
  • Riccardo Pecori
  • Emilio Vicari
  • Monica Mordonini
  • Stefano Cagnoni
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 830)

Abstract

The Relevance Index method has been shown to be effective in identifying Relevant Sets in complex systems, i.e., variable sub-sets that exhibit a coordinated behavior, along with a clear independence from the remaining variables. The need for computing the Relevance Index for each possible variable sub-set makes such a computation unfeasible, as the size of the system increases. Because of this, smart search methods are needed to analyze large-size systems using such an approach. Niching metaheuristics provide an effective solution to this problem, as they join search capabilities to good exploration properties, which allow them to explore different regions of the search space in parallel and converge onto several local/global minima.

In this paper, we describe the application of a niching metaheuristic, K-means PSO, to a set of complex systems of different size, comparing, when possible, its results with the ground truth represented by the results of an exhaustive search, while we rely on the analysis of a domain expert to assess the results of larger systems. In all cases, we also compare the results of K-means PSO to another metaheuristic, based on a niching genetic algorithm, that we had previously developed.

Keywords

Complex systems Relevant sets Particle Swarm Optimization K-means clustering 

Notes

Acknowledgments

The work of Michele Amoretti was supported by the University of Parma Research Fund - FIL 2016 - Project “NEXTALGO: Efficient Algorithms for Next-Generation Distributed Systems”.

The authors would like to thank Andrea Roli, Roberto Serra, and Marco Villani for the enlightening discussions and comments on this work.

References

  1. 1.
    CUDA Toolkit. http://developer.nvidia.com/cuda-toolkit. Accessed 12 Mar 2018
  2. 2.
    Atabay, H.A., Sheikhzadeh, M.J., Torshizi, M.: A clustering algorithm based on integration of K-means and PSO. In: 2016 1st Conference on Swarm Intelligence and Evolutionary Computation (CSIEC), pp. 59–63, March 2016Google Scholar
  3. 3.
    Bird, S., Li, X.: Adaptively choosing niching parameters in a PSO. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, GECCO 2006, pp. 3–10. ACM, New York (2006)Google Scholar
  4. 4.
    Bokhari, S.M.A., Basharat, I., Khan, S.A., Qureshi, A.W., Ahmed, B.: A framework for clustering dental patients’ records using unsupervised learning techniques. In: 2015 Science and Information Conference (SAI), pp. 386–394, July 2015Google Scholar
  5. 5.
    Brits, R., Engelbrecht, A., van den Bergh, F.: A niching particle swarm optimizer. In: 4th Asia-Pacific Conference on Simulated Evolution and Learning, pp. 692–696, January 2002Google Scholar
  6. 6.
    Brits, R., Engelbrecht, A.P., van den Bergh, F.: Solving systems of unconstrained equations using particle swarm optimization. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 3, p. 6, October 2002Google Scholar
  7. 7.
    Canale, S., Giorgio, A.D., Lisi, F., Panfili, M., Celsi, L.R., Suraci, V., Priscoli, F.D.: A future internet oriented user centric extended intelligent transportation system. In: 2016 24th Mediterranean Conference on Control and Automation (MED), pp. 1133–1139, June 2016Google Scholar
  8. 8.
    Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)CrossRefGoogle Scholar
  9. 9.
    Cover, T., Thomas, A.: Elements of Information Theory, 2nd edn. Wiley-Interscience, New York (2006)MATHGoogle Scholar
  10. 10.
    Doreswamy, Salma, M.U.: PSO based fast K-means algorithm for feature selection from high dimensional medical data set. In: 2016 10th International Conference on Intelligent Systems and Control (ISCO), pp. 1–6, January 2016Google Scholar
  11. 11.
    Filisetti, A., Villani, M., Roli, A., Fiorucci, M., Poli, I., Serra, R.: On some properties of information theoretical measures for the study of complex systems. In: Pizzuti, C., Spezzano, G. (eds.) WIVACE 2014. CCIS, vol. 445, pp. 140–150. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12745-3_12Google Scholar
  12. 12.
    Gershenson, C., Fernandez, N.: Complexity and information: measuring emergence, self-organization, and homeostasis at multiple scales. Complexity 18(2), 29–44 (2012)CrossRefGoogle Scholar
  13. 13.
    Goudarzi, S., Hassan, W.H., Anisi, M.H., Soleymani, A., Sookhak, M., Khan, M.K., Hashim, A.H.A., Zareei, M.: ABC-PSO for vertical handover in heterogeneous wireless networks. Neurocomputing 256(Supplement C), 63–81 (2017). Fuzzy Neuro Theory and Technologies for Cloud ComputingCrossRefGoogle Scholar
  14. 14.
    Kumar, G., Sarth, P.P., Ranjan, P., Kumar, S.: Satellite image clustering and optimization using K-means and PSO. In: 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), pp. 1–4, July 2016Google Scholar
  15. 15.
    Li, H., He, H., Wen, Y.: Dynamic particle swarm optimization and K-means clustering algorithm for image segmentation. Optik-Int. J. Light Electron Opt. 126(24), 4817–4822 (2015)CrossRefGoogle Scholar
  16. 16.
    Li, X.: Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for multimodal function optimization. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3102, pp. 105–116. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24854-5_10CrossRefGoogle Scholar
  17. 17.
    Liu, B., Li, Z.: Study on the automatic recognition of hidden defects based on Hilbert Huang transform and hybrid SVM-PSO model. In: 2017 Prognostics and System Health Management Conference (PHM-Harbin), pp. 1–7, July 2017Google Scholar
  18. 18.
    MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)Google Scholar
  19. 19.
    Nguyen, H.B., Xue, B., Andreae, P.: Mutual information for feature selection: estimation or counting? Evol. Intel. 9(3), 95–110 (2016)CrossRefGoogle Scholar
  20. 20.
    Parsopoulos, K.E., Plagianakos, V.P., Magoulas, G.D., Vrahatis, M.N.: Improving the particle swarm optimizer by function “stretching”. In: Hadjisavvas, N., Pardalos, P.M. (eds.) Advances in Convex Analysis and Global Optimization. Nonconvex Optimization and Its Applications, pp. 445–457. Springer, Boston (2001).  https://doi.org/10.1007/978-1-4613-0279-7_28CrossRefGoogle Scholar
  21. 21.
    Passaro, A., Starita, A.: Particle swarm optimization for multimodal functions: a clustering approach. J. Artif. Evol. Appl. 2008, 15 p. (2008).  https://doi.org/10.1155/2008/482032. Article ID 482032
  22. 22.
    Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)CrossRefGoogle Scholar
  23. 23.
    Sani, L., et al.: Efficient search of relevant structures in complex systems. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037, pp. 35–48. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49130-1_4CrossRefGoogle Scholar
  24. 24.
    Schoeman, I.L.: Niching in particle swarm optimization. Ph.D. thesis, School of Engineering, University of Pretoria (2010)Google Scholar
  25. 25.
    Sun, Q., Wang, Y., Jiang, Y., Shao, L., Chen, D.: Fault diagnosis of SEPIC converters based on PSO-DBN and wavelet packet energy spectrum. In: 2017 Prognostics and System Health Management Conference (PHM-Harbin), pp. 1–7, July 2017Google Scholar
  26. 26.
    Tononi, G., McIntosh, A., Russel, D., Edelman, G.: Functional clustering: identifying strongly interactive brain regions in neuroimaging data. Neuroimage 7, 133–149 (1998)CrossRefGoogle Scholar
  27. 27.
    Vicari, E., et al.: GPU-based parallel search of relevant variable sets in complex systems. In: Rossi, F., Piotto, S., Concilio, S. (eds.) WIVACE 2016. CCIS, vol. 708, pp. 14–25. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57711-1_2CrossRefGoogle Scholar
  28. 28.
    Villani, M., Filisetti, A., Benedettini, S., Roli, A., Lane, D., Serra, R.: The detection of intermediate level emergent structures and patterns. In: Liò, P., Miglino, O., Nicosia, G., Nolfi, S., Pavone, M. (eds.) Proceedings of ECAL 2013, the 12th European Conference on Artificial Life. MIT Press (2013)Google Scholar
  29. 29.
    Villani, M., Roli, A., Filisetti, A., Fiorucci, M., Poli, I., Serra, R.: The search for candidate relevant subsets of variables in complex systems. Artif. Life 21(4), 412–431 (2015)CrossRefGoogle Scholar
  30. 30.
    Will, A., Bustos, J., Bocco, M., Gotay, J., Lamelas, C.: On the use of niching genetic algorithms for variable selection in solar radiation estimation. Renew. Energy 50, 168–176 (2013)CrossRefGoogle Scholar
  31. 31.
    Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2016)CrossRefGoogle Scholar
  32. 32.
    Yannibelli, V., Amandi, A.: A deterministic crowding evolutionary algorithm to form learning teams in a collaborative learning context. Expert Syst. Appl. 39(10), 8584–8592 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gianluigi Silvestri
    • 1
  • Laura Sani
    • 1
  • Michele Amoretti
    • 1
  • Riccardo Pecori
    • 1
    • 2
  • Emilio Vicari
    • 3
  • Monica Mordonini
    • 1
  • Stefano Cagnoni
    • 1
  1. 1.Dip. di Ingegneria e ArchitetturaUniversità di ParmaParmaItaly
  2. 2.SMARTEST Research CentreUniversità eCAMPUSNovedrateItaly
  3. 3.CAMLIN Technologies ItalyParmaItaly

Personalised recommendations