Advertisement

Automatic Algebraic Evolutionary Algorithms

  • Marco Baioletti
  • Alfredo Milani
  • Valentino Santucci
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 830)

Abstract

Motivated from the previously proposed algebraic framework for combinatorial optimization, here we introduce a novel formal languages-based perspective on discrete search spaces that allows to automatically derive algebraic evolutionary algorithms. The practical effect of the proposed approach is that the algorithm designer does not need to choose a solutions encoding and implement algorithmic procedures. Indeed, he/she only has to provide the group presentation of the discrete solutions of the problem at hand. Then, the proposed mechanism allows to automatically derive concrete implementations of a chosen evolutionary algorithms. Theoretical guarantees about the feasibility of the proposed approach are provided.

Keywords

Algebraic evolutionary algorithms Combinatorial optimization Formal language perspective 

References

  1. 1.
    Baioletti, M., Milani, A., Santucci, V.: Algebraic particle swarm optimization for the permutations search space. In: Proceedings of IEEE Congress on Evolutionary Computation, CEC 2017, pp. 1587–1594 (2017).  https://doi.org/10.1109/CEC.2017.7969492
  2. 2.
    Baioletti, M., Milani, A., Santucci, V.: Linear ordering optimization with a combinatorial differential evolution. In: Proceedings of 2015 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015, pp. 2135–2140 (2015).  https://doi.org/10.1109/SMC.2015.373
  3. 3.
    Baioletti, M., Milani, A., Santucci, V.: An extension of algebraic differential evolution for the linear ordering problem with cumulative costs. In: Handl, J., Hart, E., Lewis, P., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 123–133. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45823-6_12CrossRefGoogle Scholar
  4. 4.
    Baioletti, M., Milani, A., Santucci, V.: A new precedence-based ant colony optimization for permutation problems. In: Shi, Y., et al. (eds.) SEAL 2017. LNCS, vol. 10593, pp. 960–971. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68759-9_79CrossRefGoogle Scholar
  5. 5.
    Das, S., Biswas, A., Dasgupta, S., Abraham, A.: Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications. In: Abraham, A., Hassanien, A.E., Siarry, P., Engelbrecht, A. (eds.) Foundations of Computational Intelligence Volume 3. SCI, vol. 203, pp. 23–55. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01085-9_2CrossRefGoogle Scholar
  6. 6.
    Garside, F.A.: The braid group and other groups. Q. J. Math. 20(1), 235–254 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  9. 9.
    Knuth, D.E.: The genesis of attribute grammars. In: Deransart, P., Jourdan, M. (eds.) Attribute Grammars and their Applications. LNCS, vol. 461, pp. 1–12. Springer, Heidelberg (1990).  https://doi.org/10.1007/3-540-53101-7_1CrossRefGoogle Scholar
  10. 10.
    McDonald, R.B., Katzgraber, H.G.: Genetic braid optimization: a heuristic approach to compute quasiparticle braids. Phys. Rev. B 87(5), 054414 (2013)CrossRefGoogle Scholar
  11. 11.
    Santucci, V., Baioletti, M., Milani, A.: Algebraic differential evolution algorithm for the permutation flowshop scheduling problem with total flowtime criterion. IEEE Trans. Evol. Comput. 20(5), 682–694 (2016).  https://doi.org/10.1109/TEVC.2015.2507785CrossRefzbMATHGoogle Scholar
  12. 12.
    Santucci, V., Baioletti, M., Milani, A.: Solving permutation flowshop scheduling problems with a discrete differential evolution algorithm. AI Commun. 29(2), 269–286 (2016).  https://doi.org/10.3233/AIC-150695MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Santucci, V., Baioletti, M., Milani, A.: A differential evolution algorithm for the permutation flowshop scheduling problem with total flow time criterion. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 161–170. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10762-2_16Google Scholar
  14. 14.
    Schiavinotto, T., Stützle, T.: A review of metrics on permutations for search landscape analysis. Comput. Oper. Res. 34(10), 3143–3153 (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan, K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13495-1_44CrossRefGoogle Scholar
  17. 17.
    Yang, X.S., Deb, S.: Cuckoo search via Levy flights. In: 2009 World Congress on Nature Biologically Inspired Computing (NaBIC), pp. 210–214 (2009)Google Scholar
  18. 18.
    Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04944-6_14CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marco Baioletti
    • 1
  • Alfredo Milani
    • 1
    • 2
  • Valentino Santucci
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of PerugiaPerugiaItaly
  2. 2.Department of Computer ScienceHong Kong Baptist UniversityKowloon TongHong Kong

Personalised recommendations