Advertisement

Complexity Measures in Automatic Design of Robot Swarms: An Exploratory Study

  • Andrea Roli
  • Antoine Ligot
  • Mauro Birattari
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 830)

Abstract

The design of control software for robot swarms is a challenging endeavour as swarm behaviour is the outcome of the entangled interplay between the dynamics of the individual robots and the interactions among them. Automatic design techniques are a promising alternative to classic ad-hoc design procedures and are especially suited to deal with the inherent complexity of swarm behaviours. In an automatic method, the design problem is cast into an optimisation problem: the solution space comprises instances of control software and an optimisation algorithm is applied to tune the free parameters of the architecture. Recently, some information theory and complexity theory measures have been proposed for the analysis of the behaviour of single autonomous agents; a similar approach may be fruitfully applied also to swarms of robots. In this work, we present a preliminary study on the applicability of complexity measures to robot swarm dynamics. The aim of this investigation is to compare and analyse prominent complexity measures when applied to data collected during the time evolution of a robot swarm, performing a simple stationary task. Although preliminary, the results of this study enable us to state that the complexity measures we used are able to capture relevant features of robot swarm dynamics and to identify typical patterns in swarm behaviour.

Notes

Acknowledgements

Andrea Roli acknowledges the support of Université libre de Bruxelles as visiting professor in the “Chaire internationale” programme. Mauro Birattari acknowledges support from the Belgian Fonds de la Recherche Scientifique – FNRS. The project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 681872).

References

  1. 1.
    Ay, N., Bertschinger, N., Der, R., Güttler, F., Olbrich, E.: Predictive information and explorative behavior of autonomous robots. Eur. Phys. J. B - Condens. Matter Complex Syst. 63(3), 329–339 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Badii, R., Politi, A.: Complexity: Hierarchical Structures and Scaling in Physics, vol. 6. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  3. 3.
    Birattari, M., Delhaisse, B., Francesca, G., Kerdoncuff, Y.: Observing the effects of overdesign in the automatic design of control software for robot swarms. In: Dorigo, M., Birattari, M., Li, X., López-Ibáñez, M., Ohkura, K., Pinciroli, C., Stützle, T. (eds.) ANTS 2016. LNCS, vol. 9882, pp. 149–160. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44427-7_13CrossRefGoogle Scholar
  4. 4.
    Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)CrossRefGoogle Scholar
  5. 5.
    http://www.bzip.org. Accessed 30 Nov 2016
  6. 6.
    Cover, T., Thomas, J.: Elements of Information Theory. Wiley, Hoboken (2012)zbMATHGoogle Scholar
  7. 7.
    Crutchfield, J.: The calculi of emergence: computation, dynamics, and induction. Physica D 75, 11–54 (1994)CrossRefzbMATHGoogle Scholar
  8. 8.
    Edlund, J., Chaumont, N., Hintze, A., Koch, C., Tononi, G., Adami, C.: Integrated information increases with fitness in the evolution of animats. PLoS Comput. Biol. 7(10), e1002236 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Francesca, G., Birattari, M.: Automatic design of robot swarms: achievements and challenges. Front. Rob. AI 3, 29 (2016)Google Scholar
  10. 10.
    Francesca, G., Brambilla, M., Brutschy, A., Trianni, V.: AutoMoDe: a novel approach to the automatic design of control software for robot swarms. Swarm Intell. 8(2), 89–112 (2014)CrossRefGoogle Scholar
  11. 11.
    Galas, D., Nykter, M., Carter, G., Price, N.: Biological information as set-based complexity. IEEE Trans. Inf. Theory 56, 667–677 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gell-Mann, M., Lloyd, S.: Information measures, effective complexity, and total information. Complexity 2(1), 44–52 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Grassberger, P.: How to measure self-generated complexity. Phys. A: Stat. Mech. Appl. 140(1–2), 319–325 (1986)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kolmogorov, A.: Three approaches to the quantitative definition of information. Prob. Inf. Transm. 1(1), 1–7 (1965)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory 22(1), 75–81 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Li, W.: On the relationship between complexity and entropy for Markov chains and regular languages. Complex Syst. 5(4), 381–399 (1991)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Lindgren, K.: Information theory for complex systems - an information perspective on complexity in dynamical systems, physics, and chemistry. Chalmers (2014). http://studycas.com/c/courses/it
  18. 18.
    Lindgren, K., Nordahl, M.: Complexity measures and cellular automata. Complex Syst. 2(4), 409–440 (1988)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Lizier, J.: The Local Information Dynamics of Distributed Computation in Complex Systems. Springer Theses Series. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-32952-4CrossRefzbMATHGoogle Scholar
  20. 20.
    Lloyd, S.: Measures of complexity: a nonexhaustive list. IEEE Control Syst. Mag. 21(4), 7–8 (2001)CrossRefGoogle Scholar
  21. 21.
    Lopez-Ruiz, R., Mancini, H., Calbet, X.: A statistical measure of complexity. Phys. Lett. A 209, 321–326 (1995)CrossRefGoogle Scholar
  22. 22.
    Nicolis, G., Nicolis, C.: Foundations of Complex Systems: Emergence, Information and Predicition. World Scientific, Singapore (2012)CrossRefzbMATHGoogle Scholar
  23. 23.
    Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L., Dorigo, M.: ARGoS: a modular, multi-engine simulator for heterogeneous swarm robotics. Swarm Intell. 6(4), 271–295 (2012)CrossRefGoogle Scholar
  24. 24.
    Prokopenko, M., Boschetti, F., Ryan, A.: An information-theoretic primer on complexity, self-organization, and emergence. Complexity 15(1), 11–28 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Prokopenko, M.: Guided Self-Organization: Inception, vol. 9. Springer Science & Business Media, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-53734-9Google Scholar
  26. 26.
    Shalizi, C., Crutchfield, J.: Computational mechanics: pattern and prediction, structure and simplicity. J. Stat. Phys. 104(3), 817–879 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27(1, 2), 379–423, 623–656 (1948)Google Scholar
  28. 28.
    Sperati, V., Trianni, V., Nolfi, S.: Evolving coordinated group behaviours through maximisation of mean mutual information. Swarm Intell. 2(2), 73–95 (2008)CrossRefGoogle Scholar
  29. 29.
    Trianni, V.: Evolutionary Swarm Robotics: Evolving Self-Organising Behaviours in Groups of Autonomous Robots, vol. 108. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-77612-3Google Scholar
  30. 30.
    Utro, F., Di Benedetto, V., Corona, D., Giancarlo, R.: The intrinsic combinatorial organization and information theoretic content of a sequence are correlated to the DNA encoded nucleosome organization of eukaryotic genomes. Bioinformatics 32(6), 835–842 (2015)CrossRefGoogle Scholar
  31. 31.
    Villani, M., Roli, A., Filisetti, A., Fiorucci, M., Poli, I., Serra, R.: The search for candidate relevant subsets of variables in complex systems. Artif. Life 21(4), 412–431 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and Engineering, Campus of CesenaAlma Mater Studiorum, Università di BolognaCesenaItaly
  2. 2.IRIDIAUniversité libre de BruxellesBrusselsBelgium

Personalised recommendations