Advertisement

Functional Interactions in Complex Networks: A Three-Step Methodology for the Implementation of the Relevance Index (RI)

  • Riccardo Righi
  • Sofia Samoili
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 830)

Abstract

In order to enable the management of the large presence of similar groups of agents, namely masks, resulting from the implementation of the Relevance Index (RI) algorithm, the ‘PoSH-CADDy’ three-step methodology is here proposed. The developed procedure is based on (i) several rounds of analysis to be performed over reducing sets of agents (with a Progressive Skimming procedure), (ii) the consideration of the overlaps among masks emerging from the output of each round (by means of a Hierachical Cluster Analysis), (iii) a final analysis of the masks remaining from the previous steps (by considering those with a minimum Degree of Dissimilarity). The methodology is implemented in a real socio-economic complex network. Insights from a first explorative analysis are provided.

Keywords

Functional interactions Physical order Relevance Index Progressive skimming Hierarchical clustering 

References

  1. 1.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  2. 2.
    Righi, R., Roli, A., Russo, M., Serra, R., Villani, M.: New paths for the application of DCI in social sciences: theoretical issues regarding an empirical analysis. In: Rossi, F., Piotto, S., Concilio, S. (eds.) WIVACE 2016. CCIS, vol. 708, pp. 42–52. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57711-1_4CrossRefGoogle Scholar
  3. 3.
    Hidalgo, C.: Why Information Grows: The Evolution of Order, from Atoms to Economies. Basic Books, New York (2015)Google Scholar
  4. 4.
    Villani, M., Filisetti, A., Benedettini, S., Roli, A., Lane, D., Serra, R.: The detection of intermediate-level emergent structures and patterns. In: ECAL, pp. 372–378 (2013)Google Scholar
  5. 5.
    Villani, M., Benedettini, S., Roli, A., Lane, D., Poli, I., Serra, R.: Identifying emergent dynamical structures in network models. In: Bassis, S., Esposito, A., Morabito, F.C. (eds.) Recent Advances of Neural Network Models and Applications. SIST, vol. 26, pp. 3–13. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-04129-2_1CrossRefGoogle Scholar
  6. 6.
    Filisetti, A., Villani, M., Roli, A., Fiorucci, M., Serra, R.: Exploring the organisation of complex systems through the dynamical interactions among their relevant subsets. In: Proceedings of the European Conference on Artificial Life 2015 (ECAL 2015), vol. 13, pp. 286–293 (2016)Google Scholar
  7. 7.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep. 659, 1–44 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Sani, L., et al.: Efficient search of relevant structures in complex systems. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037, pp. 35–48. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49130-1_4CrossRefGoogle Scholar
  10. 10.
    Vicari, E., et al.: GPU-based parallel search of relevant variable sets in complex systems. In: Rossi, F., Piotto, S., Concilio, S. (eds.) WIVACE 2016. CCIS, vol. 708, pp. 14–25. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57711-1_2CrossRefGoogle Scholar
  11. 11.
    Tononi, G., McIntosh, A.R., Russell, D.P., Edelman, G.M.: Functional clustering: identifying strongly interactive brain regions in neuroimaging data. NeuroImage 7(2), 133–149 (1998).  https://doi.org/10.1006/nimg.1997.0313CrossRefGoogle Scholar
  12. 12.
    Tononi, G., Sporns, O., Edelman, G.M.: A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. U.S.A. 91(11), 5033–5037 (1994). ISSN: 0027-8424CrossRefGoogle Scholar
  13. 13.
    Tononi, G., Sporns, O., Edelman, G.M.: A complexity measure for selective matching of signals by the brain. Proc. Natl. Acad. Sci. U.S.A. 93(8), 3422–3427 (1996). ISSN: 0027-8424CrossRefGoogle Scholar
  14. 14.
    Russo, M., Rossi, F.: Cooperation networks and innovation: a complex system perspective to the analysis and evaluation of a EU regional innovation policy programme. Evaluation 15, 75–100 (2009).  https://doi.org/10.1177/1356389008097872CrossRefGoogle Scholar
  15. 15.
    Caloffi, A., Rossi, F., Russo, M.: The emergence of intermediary organizations: a network-based approach to the design of innovation policies. In: Handbook on Complexity and Public Policy, pp. 314–331 (2015). ISBN: 978-1-78254-951-2Google Scholar
  16. 16.
    Rossi, F., Caloffi, A., Russo, M.: Networked by design: can policy requirements influence organisations’ networking behaviour? Technol. Forecast. Soc. Chang. 105, 203–214 (2016).  https://doi.org/10.1016/j.techfore.2016.01.004CrossRefGoogle Scholar
  17. 17.
    Lane, D.A.: Complexity and innovation dynamics. In: Handbook on the Economic Complexity of Technological Change. Edward Elgar Publishing (2011). ISBN: 978-0-85793-037-8Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.European Commission, Joint Research Centre (JRC), Unit B6 - Digital EconomySevilleSpain

Personalised recommendations