Skip to main content

Estimating Effects of Extrinsic Noise on Model Genes and Circuits with Empirically Validated Kinetics

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 830))

Abstract

Recent studies of Escherichia coli transcription dynamics using time-lapse confocal microscopy and in vivo single-RNA detection confirmed that transcription initiation has two main rate-limiting steps. Here, we argue that this allows selective ‘tuning’ of the effects of extrinsic noise on a multi-scale level that ranges from individual genes to large-scale gene networks. First, using empirically validated stochastic models of transcription and translation, we show that the effects of RNA polymerase numbers’ cell-to-cell variability on the cell-to-cell diversity in RNA numbers decrease as the relative time-length of the open complex formation increases. Next, using a stochastic model of a 2-genes symmetric toggle switch, we show that the cell-to-cell diversity of the switching frequency due to cell-to-cell variability in RNA polymerase numbers also depends on the promoter kinetics. Finally, from the binarized protein numbers over time of 50-gene network models where genes interact by repression, we calculate the cell-to-cell variability of the mutual information and Lempel-Ziv complexity of the networks dynamics, and find that, while arising from the cell-to-cell variability in RNA polymerase numbers, these variability levels also depend on the promoter initiation kinetics. Given this, we hypothesize that E. coli may be capitalizing on the 2 rate-limiting steps’ nature of transcription initiation to tune the effects of extrinsic noise at the single gene, motifs, and large gene regulatory network levels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jishage, M., Iwata, A., Ueda, S., Ishihama, A.: Regulation of RNA polymerase sigma sub-unit synthesis in Escherichia coli: intracellular levels of four species of sigma subunit under various growth conditions. J. Bacteriol. 178, 5447–5451 (1996)

    Article  Google Scholar 

  2. Rahman, M., Hasan, M.R., Oba, T., Shimizu, K.: Effect of rpoS gene knockout on the metabolism of Escherichia coli during exponential growth phase and early stationary phase based on gene expressions, enzyme activities and intracellular metabolite concentrations. Biotechnol. Bioeng. 94, 585–595 (2006)

    Article  Google Scholar 

  3. Megerle, J.A., Fritz, G., Gerland, U., Jung, K., Rädler, J.O.: Timing and dynamics of single cell gene expression in the arabinose utilization system. Biophys. J. 95, 2103–2115 (2008)

    Article  Google Scholar 

  4. Jones, D.L., Brewster, R.C., Phillips, R.: Promoter architecture dictates cell-to-cell variability in gene expression. Science 346, 1533–1537 (2014)

    Article  Google Scholar 

  5. Farewell, A., Kvint, K., Nyström, T.: Negative regulation by RpoS: a case of sigma factor competition. Mol. Microbiol. 29, 1039–1051 (1998)

    Article  Google Scholar 

  6. Hengge-Aronis, R.: Recent insights into the general stress response regulatory network in Escherichia coli. J. Mol. Microbiol. Biotechnol. 4, 341–346 (2002)

    Google Scholar 

  7. Kandavalli, V.K., Tran, H., Ribeiro, A.S.: Effects of σ factor competition on the in vivo kinetics of transcription initiation in E. coli. BBA Gene Regul. Mech. 1859, 1281–1288 (2016)

    Google Scholar 

  8. McClure, W.R.: Rate-limiting steps in RNA chain initiation. Proc. Natl. Acad. Sci. USA 77, 5634–5648 (1980)

    Article  Google Scholar 

  9. Lloyd-Price, J., Startceva, S., Kandavalli, V., Chandraseelan, J., Goncalves, N., Oliveira, S.M.D., Häkkinen, A., Ribeiro, A.S.: Dissecting the stochastic transcription initiation process in live Escherichia coli. DNA Res. 23(3), 203–214 (2016)

    Article  Google Scholar 

  10. Bahrudeen, M.N.M., Startceva, S., Ribeiro, A.S.: Effects of extrinsic noise are promoter kinetics dependent. In: The 9th International Conference on Bioinformatics and Biomedical Technology on Proceedings, ICBBT 2017, Lisbon, Portugal, pp. 44–47 (2017)

    Google Scholar 

  11. Bahrudeen, M.N.M., Startceva, S., Ribeiro, A.S.: Tuning extrinsic noise effects on a small genetic circuit. In: The European Conference on Artificial Life on Proceedings, ECAL 2017, Lyon, France, vol. 14, pp. 454–459 (2017)

    Google Scholar 

  12. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  13. Lloyd-Price, J., Gupta, A., Ribeiro, A.S.: SGNS2: a compartmentalized stochastic chemical kinetics simulator for dynamic cell populations. Bioinformatics 28, 3004–3005 (2012)

    Article  Google Scholar 

  14. Bernstein, J.A., Khodursky, A.B., Pei-Hsun, L., Lin-Chao, S., Cohen, S.N.: Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc. Natl. Acad. Sci. USA 99, 9697–9702 (2002)

    Article  Google Scholar 

  15. Taniguchi, Y., Choi, P.J., Li, G.-W., et al.: Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010)

    Article  Google Scholar 

  16. Mitarai, N., Sneppen, K., Pedersen, S.: Ribosome collisions and translation efficiency: optimization by codon usage and mRNA destabilization. J. Mol. Biol. 382, 236–245 (2008)

    Article  Google Scholar 

  17. Bremer, H., Dennis, P.P.: Modulation of chemical composition and other parameters of the cell by growth rate. In: Neidhardt, F.C. (ed.) Escherichia Coli and Salmonella, 2nd edn, pp. 1553–1569. ASM Press, Washington, DC (1996)

    Google Scholar 

  18. Kennel, D., Riezman, H.: Transcription and translation initiation frequencies of the Escherichia coli lac operon. J. Mol. Biol. 114(1), 1–21 (1977)

    Article  Google Scholar 

  19. Cormack, B.P., Valdivia, R.H., Falkow, S.: FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173(1), 33–38 (1996)

    Article  Google Scholar 

  20. Neubauer, Z., Calef, E.: Immunity phase-shift in defective lysogens: non-mutational hereditary change of early regulation of λ Prophage. J. Mol. Biol. 51, 1–13 (1970)

    Article  Google Scholar 

  21. Arkin, A., Ross, J., McAdams, H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149, 1633–1648 (1998)

    Google Scholar 

  22. Fu, Y., Jarboe, L.R., Dickerson, J.A.: Reconstructing genome-wide regulatory network of E. coli using transcriptome data and predicted transcription factor activities. BMC Bioinform. 12(233) (2011). https://doi.org/10.1186/1471-2105-12-233

  23. Saecker, R.M., Record, M.T., Dehaseth, P.L.: Mechanism of bacterial transcription initiation: RNA polymerase - promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. J. Mol. Biol. 412, 754–771 (2011)

    Article  Google Scholar 

  24. Chamberlin, M.: The selectivity of transcription. Annu. Rev. Biochem. 43, 721–775 (1974)

    Article  Google Scholar 

  25. deHaseth, P.L., Zupancic, M.L., Record, M.T.: RNA polymerase promoter interactions: the comings and goings of RNA polymerase. J. Bacteriol. 180, 3019–3025 (1998)

    Google Scholar 

  26. Ribeiro, A.S., Kauffman, S.A., Lloyd-Price, J., Samuelsson, B., Socolar, J.E.S.: Mutual information in random Boolean models of regulatory networks. Phys. Rev. E 77, 011901 (2008)

    Article  MathSciNet  Google Scholar 

  27. Lempel, A., Ziv, J.: On the Complexity of Finite Sequences. IEEE Trans. Inform. Theory 22, 75–81 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shmulevich, I., Kauffman, S.A., Aldana, M.: Eukaryotic cells are dynamically ordered or critical but not chaotic. Proc. Natl. Acad. Sci. USA 102(38), 13439–13444 (2005)

    Article  Google Scholar 

  29. Borowska, M., Oczeretko, E., Mazurek, A., Kitlas, A., Kuć, P.: Application of the Lempel-Ziv complexity measure to the analysis of biosignals and medical images. In: Annual Proceedings of Medical Science, vol. 50, Suppl. 2 (2005)

    Google Scholar 

  30. Ribeiro, A.S., Kauffman, S.A.: Noisy attractors and ergodic sets in models of gene regulatory networks. J. Theor. Biol. 247(4), 743–755 (2007)

    Article  MathSciNet  Google Scholar 

  31. McClure, W.R.: Mechanism and control of transcription initiation in prokaryotes. Annu. Rev. Biochem. 54, 171–204 (1985)

    Article  Google Scholar 

  32. Roussel, M.R., Zhu, R.: Validation of an algorithm for delay stochastic simulation of transcription and translation in prokaryotic gene expression. Phys. Biol. 3, 274–284 (2006)

    Article  Google Scholar 

  33. Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)

    Article  Google Scholar 

  34. Airoldi, E.M., Carley, K.M.: Sampling algorithms for pure network topologies: a study on the stability and the separability of metric embeddings. ACM SIGKDD Explor. Newsl. 7(2), 13–22 (2005)

    Article  Google Scholar 

  35. Bollobas, B.: Random Graphs, 2nd edn. Academic Press, New York (2001)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

Work supported by Academy of Finland (295027 ASR), Academy of Finland Key Project Funding (305342 ASR), Jane and Aatos Erkko Foundation (610536 ASR), Finnish Academy of Science and Letters (SO), and Tampere University of Technology President’s Graduate Program (SS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre S. Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oliveira, S.M.D., Bahrudeen, M.N.M., Startceva, S., Ribeiro, A.S. (2018). Estimating Effects of Extrinsic Noise on Model Genes and Circuits with Empirically Validated Kinetics. In: Pelillo, M., Poli, I., Roli, A., Serra, R., Slanzi, D., Villani, M. (eds) Artificial Life and Evolutionary Computation. WIVACE 2017. Communications in Computer and Information Science, vol 830. Springer, Cham. https://doi.org/10.1007/978-3-319-78658-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78658-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78657-5

  • Online ISBN: 978-3-319-78658-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics