Skip to main content

Simulating Populations of Protocells with Uneven Division

  • Conference paper
  • First Online:
Book cover Artificial Life and Evolutionary Computation (WIVACE 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 830))

Included in the following conference series:

  • 473 Accesses

Abstract

Protocells should be similar to present-day biological cells, but much simpler. They are believed to have played a key role in the origin of life, and they may also be the basis of a new technology with tremendous opportunities. In this work we study the effect of uneven division processes on the synchronization of the duplication rates of protocells’ membrane and internal materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that even in this case it is possible that not all the internal X-molecules be active in supporting the container building; however, in [19] we show that also this difference does not significantly affect the process leading to the synchronization of the X-molecules and container reproduction rates.

  2. 2.

    The dropping of this hypothesis is one of the topics of this paper.

  3. 3.

    This assumption is reasonable if we suppose that the flow of water is “fast” enough to allow us to consider the protocell as turgid, on the time scale of interest [20]. This implies that we do not describe here in detail the breakup of a vesicle into two, which certainly requires consideration of shape changes – that are supposed to be fast and to fall below the time scale of the relevant phenomena that the model describes. Moreover, we do not take explicitly into account osmotic effects (as for example in [21]) that might be relevant in the case of hypertonic or hypotonic environments.

  4. 4.

    Obviously, L = 1 in case of the GMMs are diluted in the membrane.

References

  1. Rasmussen, S., Bedau, M.A., Chen, L., Deamer, D., Krakauer, D.C., Packard, N.H., Stadler, P.F. (eds.): Protocells. The MIT Press, Cambridge (2008)

    Google Scholar 

  2. Schrum, J.P., Zhu, T.F., Szostak, J.W.: The origins of cellular life. Cold Spring Harb. Perspect. Biol. 2, a002212 (2010)

    Article  Google Scholar 

  3. Serra, R., Villani, M.: A stochastic model of growing and dividing protocells. Modelling Protocells. UCS, pp. 105–147. Springer, Dordrecht (2017). https://doi.org/10.1007/978-94-024-1160-7_5

    Chapter  Google Scholar 

  4. Smith, J.M., Szathmáry, E.: The Major Transitions in Evolution. W.H. Freeman Spektrum, Oxford (1995)

    Google Scholar 

  5. Serra, R.: The complex systems approach to protocells. In: Pizzuti, C., Spezzano, G. (eds.) Advances in Artificial Life and Evolutionary Computation, WIVACE 2014. Communications in Computer and Information Science, vol. 445, pp. 201–211. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12745-3_16

    Google Scholar 

  6. Villani, M., Filisetti, A., Graudenzi, A., Damiani, C., Carletti, T., Serra, R.: Growth and division in a dynamic protocell model. Life 4, 837–864 (2014)

    Article  Google Scholar 

  7. Filisetti, A., Serra, R., Carletti, T., Villani, M., Poli, I.: Non-linear protocell models: synchronization and chaos. Europhys. J. B 77, 249–256 (2010)

    Google Scholar 

  8. Carletti, T., Serra, R., Poli, I., Villani, M., Filisetti, A.: Sufficient conditions for emergent synchronization in protocell models. J. Theor. Biol. 254, 741–751 (2008)

    Article  MathSciNet  Google Scholar 

  9. Filisetti, A., Serra, R., Carletti, T., Poli, I., Villani, M.: Synchronization phenomena in protocell models. BRL. Biophys. Rev. Lett. 3(1/2), 325–342 (2008)

    Article  Google Scholar 

  10. Serra, R., Carletti, T., Poli, I.: Synchronization phenomena in surface reaction models of protocells. Artif. Life 13, 1–16 (2007)

    Article  Google Scholar 

  11. Svetina, S.: Vesicle budding and the origin of cellular life. ChemPhysChem 10, 2769–2776 (2009)

    Article  Google Scholar 

  12. Solé, R.V., Macía, J., Fellermann, H., Munteanu, A., Sardanyés, J., Valverde, S.: Models of protocell replication. In: Rasmussen, S., Bedau, M.A., Chen, L., Deamer, D., Krakauer, D.C., Packard, N.H., Stadler, P.F. (eds.) Protocells, pp. 213–231. The MIT Press, Cambridge (2008)

    Chapter  Google Scholar 

  13. Ruiz-Mirazo, K., Briones, C., de la Escosura, A.: Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014)

    Article  Google Scholar 

  14. Luisi, P.L., Ferri, F., Stano, P.: Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften 93, 1–13 (2006)

    Article  Google Scholar 

  15. Luisi, P.L.: The Emergence of Life: From Chemical Origins to Synthetic Biology. Cambridge University Press, New York (2007)

    Google Scholar 

  16. Terasawa, H., Nishimura, K., Suzuki, H., Matsuura, T., Yomo, T.: Coupling of the fusion and budding of giant phospholipid vesicles containing macromolecules. Proc. Natl. Acad. Sci. 109, 5942–5947 (2012)

    Article  Google Scholar 

  17. Rasmussen, S., Chen, L., Stadler, B.M.R., Stadler, P.F.: Photo-organism kinetics: Evolutionary dynamics of lipid aggregates with genes and metabolism. Orig. Life Evol. Biosph. 34, 171–180 (2004)

    Article  Google Scholar 

  18. Rocheleau, T., Rasmussen, S., Nielsen, P.E., Jacobi, M.N., Ziock, H.: Emergence of protocellular growth laws. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 1841–1845 (2007)

    Article  Google Scholar 

  19. Calvanese, G., Villani, M., Serra, R.: Synchronization in near-membrane reaction models of protocells. In: Rossi, F., Piotto, S., Concilio, S. (eds.) WIVACE 2016. CCIS, vol. 708, pp. 167–178. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57711-1_15

    Chapter  Google Scholar 

  20. Sacerdote, M.G., Szostak, J.W.: Semipermeable lipid bilayers exhibit diastereoselectivity favoring ribose. Proc. Natl. Acad. Sci. 102, 6004–6008 (2005)

    Article  Google Scholar 

  21. Mavelli, F., Ruiz-Mirazo, K.: Theoretical conditions for the stationary reproduction of model protocells. Integr. Biol. 5, 324–341 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Musa, M., Villani, M., Serra, R. (2018). Simulating Populations of Protocells with Uneven Division. In: Pelillo, M., Poli, I., Roli, A., Serra, R., Slanzi, D., Villani, M. (eds) Artificial Life and Evolutionary Computation. WIVACE 2017. Communications in Computer and Information Science, vol 830. Springer, Cham. https://doi.org/10.1007/978-3-319-78658-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78658-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78657-5

  • Online ISBN: 978-3-319-78658-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics